

CENTRE DE RECHERCHE SUR L'ALUMINIUM ALUMINIUM RESEARCH CENTRE

ENCYCLOPEDIE

RECHERCHE SUR L'ALUMINIUM AU QUÉBEC

Journée étudiante du REGAL

ENCYCLOPEDIA RESEARCH ON ALUMINIUM IN QUÉBEC

Regal students' day

2022

19^e édition

19th edition

ENCYCLOPÉDIE DE LA RECHERCHE SUR L'ALUMINIUM AU QUÉBEC 2022 THE ENCYCLOPEDIA OF RESEARCH ON ALUMINIUM IN QUEBEC 2022

Table des matières Table of contents

Comite a organisation/ Organizing committee	6
Préface / Preface	
Formations / Formations	8
Conférences / Lectures	
Affiches / Posters*	
AXE 1 : Production de l'aluminium / Aluminium Production	
AXE 2 : Transformation et applications / Transformation and applications	29
Remerciements / Acknowledgements	

*La liste complète des affiches est disponible au début de chaque section.

Les textes et illustrations sont une reproduction fidèle et respectent en tous points les travaux des étudiants. The texts and illustrations here in are accurate, faithful reproductions of the students' work.

Centre de recherche sur l'aluminium - REGAL

Université Laval 1065, avenue de la Médecine, local 1746 Québec (Québec) G1V 0A6 Canada Téléphone : 418 656-2362 www.regal-aluminium.ca

Montage graphique / Graphic assembly REGAL

Infographie / Layout REGAL

Coordination / Coordination

Marie-Louise Tremblay Centre de recherche sur l'aluminium – REGAL

Tous droits réservés. Sauf à des fins de citations, toute reproduction d'un extrait quelconque de ce livre, par quelque procédé que ce soit, est strictement interdite sans la permission écrite de l'éditeur.

All rights reserved. Other than for purpose of citation, all reproduction of any part of this book, by any process is strictly forbidden without the permission of the publisher.

© Centre de recherche sur l'aluminium – REGAL, 2022 Dépôt légal – Bibliothèque nationale du Québec, 2022 / Copyright – Quebec National Library Dépôt légal – Bibliothèque nationale du Canada, 2022 / Copyright – Canadian National Library ISBN : 978-2-9815930-7-8

$\begin{array}{l} 19^{\text{E}} \text{ JOURNÉE ÉTUDIANTE DU REGAL} \\ 19^{\text{TH}} \text{ REGAL STUDENTS' DAY} \end{array}$

Comité d'organisation Organizing Team

Houshang Alamdari	Directeur du REGAL	Université Laval
Marie-Louise Temblay	Coordonnatrice du REGAL	Université Laval
X-Grant Chen	Coordonnateur institutionnel	UQAC
Lukas Dion	Cochercheur REGAL	UQAC
Mousa Javidani	Cochercheur REGAL	UQAC
Guillaume Bonneau	Professionnel de recherche	UQAC
Danielle Bernard	Commis au soutien administratif	UQAC - CURAL
Thomas Roger	stagiaire postdoctoral	UQAC
Liying Cui	Doctorante	UQAC
Mario Fafard	Cochercheur	Université Laval

Préface Preface

Depuis 19 ans, le REGAL organise un événement consacré à la communauté étudiante. La journée étudiante du REGAL, activité phare de la programmation du Centre, présente chaque année une vue d'ensemble de la recherche universitaire effectuée dans le domaine de l'aluminium au Québec. C'est une occasion unique où étudiants et étudiantes, chercheurs et chercheuses, professionnelles et professionnels, techniciennes et techniciens et intervenants de l'industrie se rencontrent, discutent et partagent leurs connaissances sur l'aluminium.

Ce fut un immense plaisir pour l'Université du Québec à Chicoutimi (UQAC) d'accueillir, en tant qu'institution membre du REGAL, cette 19e édition de la Journée étudiante du REGAL. Au fil des ans, cette journée a su devenir un événement attendu dans le milieu auquel s'est ajoutée une journée de formation (JFR) complémentaire en 2017. Pour preuve, l'édition 2022 a attiré plus de 150 personnes.

L'encyclopédie de la recherche sur l'aluminium au Québec regroupe un résumé des 5 conférences étudiantes présentées par des étudiantes et étudiants des institutions membres du REGAL ainsi que les 50 affiches scientifiques qui ont été présentées dans le cadre du concours d'affiches. Cette année, six conférenciers invités ont offert des formations sur différents sujets touchant au domaine de l'aluminium. Les résumés de leurs conférences sont également présentés dans cet ouvrage. Ce recueil constitue un moyen pratique et durable pour diffuser et suivre l'évolution de la recherche universitaire et collégiale sur l'aluminium au Québec réalisée dans le cadre du regroupement stratégique REGAL, financé depuis plusieurs années par le FRQNT.

L'activité avait aussi pour but de souligner l'excellence du travail de nos étudiants et étudiantes. Treize bourses totalisant 22 000 \$ ont ainsi été remises a celles et ceux qui se sont distingués pour la qualité de leur travail.

Tout ceci n'aurait toutefois pas été possible sans l'appui du Fonds de recherche du Québec - Nature et technologies (FRQNT) et des entreprises et organismes partenaires qui ont collectivement offert un support financier ayant permis, notamment, la remise de prix aux étudiants. Nous remercions ICSOBA, le CSMO, Alouette, Hatch, le CRITM, ELYSIS, le CQRDA, Alcoa, Rio Tinto, le CURAL et AluQuébec pour leur fidèle participation.

For the past 19 years, REGAL has organized an event dedicated to the student community. REGAL's Student Day, the Centre's signature event, presents an annual overview of university research in the field of aluminium in Quebec. It is a unique opportunity for students, researchers, professionals, technicians and industry stakeholders to meet, discuss and share their knowledge on aluminium.

It was a great pleasure for the Université du Québec à Chicoutimi (UQAC) to host, as a member institution of REGAL, this 19th edition of the REGAL Students' Day. Over the years, this day has become an awaited event in the milieu, to which was added a complementary formation day (JFR) in 2017. As proof, the 2022 edition attracted more than 150 people.

The Encyclopedia of Aluminium Research in Québec includes a summary of the 5 students' conferences presented by students from REGAL member institutions as well as the 50 scientific posters that were presented during the poster contest. This year, six guest speakers offered courses on various topics related to aluminium. The abstracts of their lectures are also presented in this compilation. This publication is a practical and sustainable way to disseminate and follow the evolution of university and college research on aluminium in Quebec, carried out within the framework of the REGAL strategic grouping, which has been funded for several years by the FRQNT.

The activity was also intended to highlight the excellence of our students' work. Thirteen scholarships totalling \$22,000 were awarded to those who distinguished themselves for the quality of their work.

All this would not have been possible without the support of the Fonds de recherche du Québec - Nature et technologies (FRQNT) and the partner companies and organizations that collectively offered financial support, which allowed, among other things, the awarding of prizes to students. We would like to thank ICSOBA, CSMO, Alouette, Hatch, CRITM, ELYSIS, CQRDA, Alcoa, Rio Tinto, CURAL and AluQuébec for their continued participation.

X-Grant Chen Coordonnateur établissement UQAC

FORMATIONS FORMATIONS

Modélisation du procédé de production d'aluminium – approches, stratégies et exemples

Le procédé de production d'aluminium est souvent difficile à modéliser: il inclut une vaste gamme de phénomènes physiques interreliés (électrique, thermique, mécanique, électro-chimique, magnétohydrodynamique, etc.) se produisant dans un milieu industriel où les mesures sont limitées et imparfaites. L'objectif de cette formation est de présenter quelques exemples de modélisation appliqués avec succès dans l'industrie, notamment un modèle de distribution du courant et de l'ACD, un algorithme de détection précoce des anodes posées à la mauvaise hauteur, et un modèle représentant les bulles de CO2 sous les anodes. L'emphase sera mise sur les meilleures stratégies à utiliser pour développer des modèles utiles en industrie: comment réussir à bien représenter les principaux phénomènes physiques, viser le bon niveau de complexité, coupler différents modèles entre eux, et exploiter efficacement toutes les mesures qui sont maintenant disponibles.

Modeling the aluminum reduction process – approaches, strategies and examples

Modeling the aluminum reduction process is notoriously difficult: it includes a vast range of interrelated physical phenomena (electrical, thermal, mechanical, electrochemical, magnetohydrodynamics, etc.) taking place in an industrial environment where measurements are limited and imperfect. The objective of this training is to present some examples of modeling that were successfully applied in the industry. We will discuss a model of the distribution of the ACD and current, an algorithm to detect as early as possible the anodes that were set at the wrong height, and a model of the CO2 bubbles underneath an anode. Beyond the examples themselves, we will try to emphasize the best strategies to use when developing a model: how to represent accurately the physical phenomena under consideration, how to aim for the right level of complexity, how to combine models, and how to integrate efficiently all the new data which is now available.

Sébastien Guérard Ing., M.Sc. CRDA, Rio Tinto

Thermodynamic Modeling of Molten Salts and Metal Phases for the Production of Aluminum Alloys

Patrice Chartrand Ing., Ph. D. Professeur titulaire Polytechnique

Intelligence artificielle en contexte industriel 4.0 : un monstre de données

Disposant d'une panoplie de capteurs, on croit généralement à tort que le développement de projets industriels basés sur les données est facile... mais derrière chaque succès, une équipe a dû surmonter des difficultés que vivront toutes les entreprises désirant mettre en place ces technologies. Lors de cette présentation, le professeur Gaudreault aborde les risques et écueils les plus communs dans ce type de projets. Capturing industrial data and turn them into a gold is often considered an easy task. However, in practice, data are going to make you sweat! During this talk, professor Gaudreault will give you an overview of the most common problems (and solutions) for this kind of projects.

Jonathan Gaudreault Ing., Ph.D. Professeur titulaire Université Laval

Planification et analyse statistique d'expériences : méthode scientifique incontournable pour comprendre et optimiser un processus

Les ingénieurs et scientifiques utilisent l'expérimentation comme stratégie fondamentale pour accroitre leurs connaissances. L'art et la pratique de la planification d'expériences ne sont pas bien connus et est négligés des ingénieurs et scientifiques. Les concepts de base pour concevoir des plans d'expérimentation efficaces et efficients dans un contexte de multi facteurs est un outil extrêmement valable pour toute personne qui entrevoit un plan de collecte de données et de tests. Il existe de la confusion et des recettes erronées sur la méthode véritable pour la planification d'expériences servant de guide la phase expérimentale de collecte des données en recherche scientifique. L'objectif de notre présentation est de proposer les principaux concepts et des règles sûres permettant de guider efficacement tout chercheur en phase de construction d'un plan

d'expériences pour la collecte de données lors d'une expérience scientifique. Les plans d'expériences proposés et les principes mis de l'avant permettront à tout chercheur, quel que soit le domaine d'application, d'obtenir le maximum d'information avec le minimum d'essais. L'analyse des résultats est faite par des méthodes statistiques éprouvées donnant des interprétations laires et sans ambiguïté. Quand vous testez plusieurs facteurs en même temps, vous obtenez davantage de résultats de vos ressources. Les stratégies de plans d'expériences proposés sont flexibles et peuvent être employées dans la conception de produits et de procédés, en laboratoire et en production. Ils peuvent aussi être employés pour l'étude et émulation de programmes informatiques.

Bernard Clément Ph.D. Professeur titulaire Polytechnique

Prédiction de l'endommagement et de la rupture de pièces extrudés dédiés à des applications de collisions

La conception d'extrusions d'aluminium pour des structures de collision, incluant les boîtes-tampons, les pare-chocs et les composantes structurales du châssis, dépend de requis spécifiques tels que l'énergie à absorber, la force transférée à l'occupant ainsi que l'espace disponible. En outre, le comportement mécanique des matériaux va établir les dimensions des extrusions afin d'atteindre ces critères. Toutefois, lors de la conception, c'est un défi d'évaluer la performance à l'impact d'un matériau, étant donné les états de contrainte et les chemins de déformation complexes. L'expérience est actuellement le meilleur outil pour déterminer l'alliage, l'état et les paramètres d'extrusion. Malgré cela, ces choix doivent régulièrement être modifiés suite aux essais d'extrusion afin d'atteindre la ductilité requise, souvent au détriment de la résistance. Cette formation montre le développement d'un outil virtuel afin de prédire précisément la performance à la collision d'un matériau et de paramètres d'extrusion donnés, en amont, à la phase de conception.

Prediction of damage and failure of extruded components for crash applications

The design of extruded aluminum crash structures including crash rails, crash cans, bumpers and structural body components is dependent on specific requirements such as the stored energy level, maximum allowable crush force and space available. Above all, the mechanical behavior of the materials used will establish the extruded section dimensions to meet these criteria. However, at the design phase, it is challenging to evaluate accurately the crash performance of a given material due to the inherent complex states of stress and strain paths. Know-how is typically used for selection of the alloy, temper and processing conditions. Even then, this choice often needs to be modified after extrusion trials in order to reach the required level of ductility, usually with a trade-off in strength. This training describes the development of a virtual tool to more accurately predict the crash performance of a given material/processing route combination, upstream at the design phase.

Jean-François Bélaned M.Sc. CNRC

Fabrication additive de l'aluminium – Enjeux et potentiel

L'aluminium et ces alliages ont un potentiel très grand en fabrication additive, mais ils possèdent tout de même certaines contraintes intrinsèques. La présentation traitera tout d'abord des caractéristiques des alliages d'aluminium qui dictent leur utilisation en fabrication additive. Les différents procédés de FA seront ensuite présentés en relation avec leurs capacités à produire des pièces en aluminium. Les caractéristiques microstructurales en fonction des procédés, le comportement mécanique des alliages en FA et les aspects de contrôle non destructif seront aussi traités.

Additive Manufacturing of Aluminium – Considerations and Potential

Aluminium and its alloys present great potential for additive manufacturing, but possess however some intrinsic constraint. The presentation will cover aluminium alloys characteristics which govern their usage in additive manufacturing. The different AM processes will then be presented in relation to their capability to produce aluminium parts. Microstructural characteristics as a function of the process, the mechanical behaviour of Al alloys and non-destructive testing considerations will also be covered.

Alexandre Bois-Brochu Ing., Ph.D. CMQ

10

CONFÉRENCES ÉTUDIANTES STUDENTS LECTURES

Impact des conditions chimiques et thermiques sur la dissolution des radeaux d'alumine dans les cellules d'électrolyse

L'injection de poudre d'alumine dans les cellules d'électrolyse entraine la formationde radeaux; limitant le contact solide-liquide qui assure la dissolution du produit injecté. Conséquemment, l'acheminement de l'alumine dissoute sous les anodes est retardé, entraînant parfois des incidents perturbateurs comme les effets anodiques. Sachant que l'agglomération de l'alumine est quasi inévitable, une meilleure connaissance des conditions chimiques et thermiques favorisant la dissolution de ces radeaux représente la meilleure piste de solution pour optimiser les stratégies d'opérations, en temps réels, selon les conditions du procédé. Cette étude a été réalisée au moyen d'une analyse paramétrique utilisant des disques non poreux d'alumine frittée. Ainsi, le comportement en dissolution de l'alumine est décrit par les nombres de Reynolds, Schmidt et Sherwood pour comparer l'impact des différents paramètres étudiés. Les résultats de cette étude démontrent que les conditions chimique et thermique du bain influencent l'écoulement de l'électrolyte autour de l'échantillon et le coefficient de diffusion et le diffusion et le coefficient de diffusion est démontrée. Avec ces informations, de nouvelles opportunités permettant de raffiner la stratégie de contrôle de l'injection d'alumine s'offre à l'industrie.

Impact of the temperature and chemistry condition on the dissolution of alumina raft in electrolysis cells

The injection of alumina powder in electrolysis cells leads to the formation of alu-mina rafts that limits the solid-liquid contact needed for the dissolution of the pow-der. Accordingly, the migration of the dissolved alumina to the zone of reaction under the anode is delayed, leading to undesired events, such as the anode effect. Knowing that raft formation is unavoidable, an improved knowledge of the che-mical and thermal conditions that favor the dissolution of those rafts is the best available path to optimize the operations strategy in real-time following changes in the process conditions. Such knowledge was acquired by conducting a parametric study on non-porous sintered alumina discs. Accordingly, the dissolution behavior of those discs is described by the Reynolds, Schmidt, and Sherwood numbers to compare the influence of the input parameters. Results show that the chemical and thermal conditions modify the flow around the sample and the diffusion coefficient of the alumina. Namely, a correlation between the cryolite ratio and the activation energy required by diffusion has been found. Using these inputs, new opportunities for an improved control strategy are foreseen for the aluminum industry.

Caractérisation expérimentale de la résistance des sections en aluminium par l'approche « Overall Interaction Concept »

Un rapport résistance/poids élevé, une excellente durabilité et résistance à la cor-rosion font de l'aluminium un excellent candidat aux constructions durables. Néan-moins, l'aluminium n'est pas encore largement accepté comme matériau pour les éléments structurels, principalement en raison (i)du manque de connaissances sur son comportement mécanique sous différents cas de charge et (ii)des limitations des normes de calcul actuelles. Cette recherche a pour but de mieux comprendre la résistance des sections et des éléments en aluminium et de développer une nouvelle approche de conception basée sur les principes du Overall Interaction Concept (O.I.C.), qui mènera finalement à une conception plus rentable. Pour cela, un programme expérimental a été réalisé pour étudier le comportement de flamba-ge des extrusions d'aluminium avec différents sections soumises à la compres-sion. La présente présentation se concentrera spécifiquement sur le comporte-ment des sections en I. Un modèle d'éléments finis non linéaires a été développé dans ABAQUS, puis validé par rapport aux données expérimentales. Ces modèles ont ensuite été intensivement utilisés pour collecter un grand nombre de données de base, et des comparaisons avec la résistance de normes connues ont été ef-fectuées. La performance de la nouvelle méthode de conception basée sur l'O.I.C. a été évaluée suite aux observations numériques et expérimentales.

Experimental characterization of the resistance of aluminium sections through the Overall Interaction Concept

A high strength-to-weight ratio, excellent durability and corrosion resistance, for-mability and recyclability make aluminium an excellent candidate for sustainable constructions. Regardless of these advantages, aluminium is yet to be widely accepted as a material of choice for structural members, mainly due to (i) the lack of knowledge towards its mechanical behavior under different loading conditions and to (ii) limitations in current design guidelines. This research is aimed at better understanding the structural resistance of aluminium sections and members and at developing a novel design approach based on the principles of the Overall Inte-raction Concept (0.1.C.), that will eventually lead to a more cost-effective design. In this respect, an extensive experimental program was performed to investigate the buckling behavior of aluminum extrusions with different section shapes sub-jected to compression. The present present presentation will focus specifically on the response of I-sections. A non-linear finite element model was developed within ABAQUS, which was further validated against experimental data. These models were then used extensively to collect a large amount of reference results, and comparisons with resistance predictions from well-known design observations.

Jonathan Alarie Université du Québec à Chicoutimi

Sahar Dahboul Université Laval

Dorian Delbergue École de technologie supérieure

Développement de mélanges à base de poudres d'aluminium pour l'impression 3D

L'extrusion de matière est un procédé de fabrication additive largement utilisé pour les plastiques, cependant il est aussi récemment développé pour les métaux. En ce sens, un mélange composé d'un liant polymérique sacrificiel est fortement chargé en poudres métalliques, similaire à ceux développés pour le moulage par injection de poudres, puis imprimé couche par couche pour fabriquer la forme de la pièce à vert. Cette pièce imprimée est ensuite déliantée puis frittée afin d'extraire le liant et de densifier la pièce métallique finale. La quantité de défauts, tels que les pores, peut-être minimisée via la maitrise de la fluidité du mélange poudre-liant, dont plu-sieurs facteurs entrent en jeu, à savoir la distribution granulométrique de la poudre et la formulation du liant. Bien que plusieurs aciers et de superalliages soient déjà imprimables par des approches de fusion laser sur lit de poudre, les alliages d'alu-minium sont reconnus comme étant difficilement manufacturable avec ces ap-proches puisqu'ils sont fortement réfléchissant et soumis à l'oxydation de surface. Ainsi, cette étude présente le développement de mélanges à base de poudres d'alliage d'aluminium (AlSi10Mg) pour l'impression 3D par extrusion de matière.

Development of aluminum-based feedstock for 3D printing

Material extrusion is an additive manufacturing process widely used with plastics, however it has been recently developed for metals. A mixture of sacrificial polymeric binder is highly-filled with metallic powder, similarly to those developed for metal injection molding, and then printed layer by layer to shape the green part. The printed part is then debound and sintered to remove the binder and densify the final metallic part. The quantity of defects, such as pores, can be minimized by control-ling the viscosity of the powder-binder mixture, several factors of which come into play, namely the particle size distribution and the binder formulation. Although se-veral steels and superalloys are already printable by laser powder bed fusion ap-proaches, aluminum alloys are recognized to be difficult to manufacture with these approaches since they are highly reflective and subject to surface oxidation. This study presents the development of aluminum-based (AISi10Mg) feedstocks for 3D printing by material extrusion.

Papa Mamadou Diop Université de Sherbrooke

Degré de sophistication requis pour la modélisation dynamique d'un pont hybride acier-aluminium avec tablier orthotrope en aluminium extrudé

Le travail de recherche présenté porte sur l'évaluation des caractéristiques dyna-miques d'un nouveau type de pont. Le type de pont en question se distingue par l'utilisation d'un tablier de pont fabriqué entièrement en aluminium. Un tel pont a ré-cemment été conçu par la firme WSP sur commande du Ministère des Transports du Québec et de l'Université Laval. Une problématique importante liée à ce nou-veau type de construction est de bien anticiper le comportement de celui-ci sous charges dynamiques. Ceci est dû, entre autres, au fait que le tablier est de type orthotrope avec une géométrie complexe, et que sa connexion avec les poutres du pont est particulière (il s'agit d'un système de brides limitant certains degrés de liberté). L'objectif principal du projet présenté ici est de définir le niveau de modé-lisation requis pour adéquatement modéliser les caractéristiques dynamiques de ce type d'ouvrage (fréquences propres et modes de vibrations). Pour ce faire, les plans du pont précédemment décrit seront utilisés pour créer plusieurs modèles par éléments finis qui présenteront divers niveaux de sophistication (P.ex. modé-lisation par la méthode de grillage, modélisation mixte poutres-coques couplées, et découplées). Comme aucune donnée expérimentale n'est disponible à l'heure actuelle, les résultats des analyses modales issues de ces modèles seront compa-rés avec les résultats issus de modèles volumiques plus sophistiqués. Il est prévu que les résultats issus des modèles seront confrontés aux résultats expérimentaux lorsque le pont sera en service.

Degree of sophistication required for the dynamic modelling of steel-aluminium hybrid bridge with extruded aluminium deck

An Fu Université McGill

Influence du traitement thermique sur la microstructure et les propriétés mécaniques de l'Al40Si fabriqué par FA

Les alliages hypereutectiques AI-Si ont de nombreuses applications industrielles telles que les avions, l'automobile, les emballages électroniques, grâce à leur résis-tance spécifique élevée, résistance à l'usure et à la corrosion souhaitée, conducti-vité thermique élevée, faible coefficient de dilatation thermique, etc. Les propriétés mécaniques des alliages hypereutectiques AI-Si peuvent être considérablement améliorées par la fabrication additive (FA), dans laquelle le raffinement de la micros-tructure, la solubilité solide accrue des éléments de renforcement, la morphologie de grain souhaitée peuvent être obtenus par la solidification rapide. En attendant, la microstructure et les performances mécaniques de l'AI-Si hypereutectique peuvent être encore modifiées par le traitement thermique.Dans cette étude, des échantil-lons d'AI-4OSi avec différentes géométries sont fabriqués par Fusion laser sur lit de poudre (LPBF) en utilisant des paramètres optimisés, les échantillons tels que fabriqué sont traités thermiquement à différentes températures et durées. Une série de caractérisations de microstructure et d'essais mécaniques des échantillons tels que construits et traités thermiquement, afin d'étudier systé-matiquement l'effet du traitement thermique sur la microstructure et les propriétés mécaniques des échantillons d'AI-40Si.

Influence of heat treatment on microstructure and mechanical properties of Al40Si fabricated by AM

Hypereutectic AI-Si alloys have wide industrial applications such as aircraft, au-tomobile, electronic packaging, as driven by their high specific strength, desired wear and corrosion resistance, high thermal conductivity, low coefficient of thermal expansion and so on. The mechanical properties of hypereutectic AI-Si alloys can be considerably enhanced by Additive Manufacturing (AM), in which microstruc-ture refinement, increased solid solubility of strengthening elements, desired grain morphology can be achieved by rapid solidification. Meanwhile, the microstructure and mechanical performance of hypereutectic AI-Si can be further modified by heat treatment. In this study, AI-40Si samples with different geometries are fabricated by Laser Powder Bed Fusion (LPBF) using optimized parameters, the as-built samples are heat treated at different temperatures and durations. A series of microstructure characterizations and mechanical properties of AI-40Si samples.

PRODUCTION DE L'ALUMINIUM ALUMINIUM PRODUCTION

Axe | Axis 1

Répertoire des affiches | Posters directory

Les étudiants dont le nom est suivi d'un astérisque (*) sont récipiendaires d'un prix d'excellence pour leur affiche. Students whose name is followed by an asterisk (*) are recipients of an award of excellence for their poster.

Jonathan Alarie* Méthodologie d'une étude paramétrique de la dissolution de l'alumin par gravimétrie	ie 16
Mohammadreza Basohbatnovinzad Étude numérique de l'écoulement gazeux du dioxyde de carbone dans une cuve d'électrolyse	17
Mohammadhossein Dabaghi Effet de la méthode de refroidissement sur les propriétés de l'anode crue	18
Arash Fassadi Chimeh Modélisation d'un réacteur à l'échelle de laboratoire pour la désulfuration des gaz d'échappement des cuves	19
Olivier Lacroix Modélisation numérique de la mise en forme des anodes vertes	20
Sophie Ménard Étude de la fluorescence de l'alumine et des composés fluorés	21
Jérôme Pearson* Modélisation du comportement des agrégats d'alumine à l'in- terface bain-métal d'une cuve d'électrolyse	22
Mohamed Qassem L'effet du taux de déformation et de l'emplacement de l'échantillon sur les propriétés de traction semi-solide de l'alliage AA5182	23
Armita Rastegari Amélioration de la qualité de l'anode par la modification du brai	24

Thomas Richer

Amélioration d'un modèle mathématique de l'interface bain métal animé par les vagues et les courants et leurs effets sur le déplacement de radeaux d'alumine	25
Nafiseh Shadvar Effet de la pression statique sur le problème de collage des anodes lors du processus de cuisson	26
Samuel Théberge Identification des intrants affectant les propriétés optiques du bain électrolytique	27
Marie Aimée Tuyizere Flora Bio liant hybride en remplacement du brai de goudron de houille dans les anodes précuites	28

Méthodologie d'une étude paramétrique de la dissolution de l'alumine par gravimétrie

Parametric study method of the alumina dissolution using gravimetry

UOAC

Introduction

The production of primary aluminum comes from the electrolysis of the aluminum oxide dissolved in molten cryolite. Hence, the alumina is injected on the surface of the electrolyte where it agglomerates, slowly dissolves and disintegrate, following the weakening of the structure. However, the dissolution of the alumina is the bottleneck to feed the electrolysis reaction upon the injection of the powder in the electrolyte. Consequently, it is of first concern to understand the fundamental behavior which impacts the disintegration and dissolution of alumina.

Method

Α

D

The gravimetric method measures the apparent weight of a sample in the bath. Each samples aim to study different behavior to represent different steps of the process. At each step, the behavior of the preceding step is also present and their influence add up in the measurement. The figures below

Time (s

demonstrate which forces affect this measurement The influence of each phenomenon at work on the sample is Disintegration (CDE): described as follows

Noise (ABCDE):

- Vibration : The environment and the flow around the Sintering (CDE): sample causes it to oscillate.
 - Support : Oxidation and vapor deposition increases its weight over time.

Gravity (ABCDE):

- Force due to the mass of the sample
- Buoyancy (ABCDE):
- Depends on the density of the sample and accordingly diminish the apparent weight of the sample
- Infiltration (BCDE):

Solid

discs

Surface

powder

The bath replaces the air contained in the sample. changing its density and releasing bubbles.

Porous

discs

Immersed

powder

- Bubbles also change the apparent density of the sample

Increasing complexity as long as they are attached to the sample

Part of the sample falls and cause instant drops of the

sample mass

- The sintering of the sample change its density and make it stronger, which leads to less disintegration.

Surface tension (DE):

Surface tension tends to keep the sample floating. For sunken samples, its role is limited to the time needed to cross the surface

Contact surface (E):

Mass diffusion occurs with the surface in contact with the liquid. As the surface change, so do the dissolution rate.

В

С

+ELYSIS

Jonathan Alarie UQAC

László I. Kiss UQAC Lukas Dion UQAC Sébastien Guérard Rio Tinto Jean-François Bilodeau

Rio Tinto

Alumina raft with evolving contact surface Dissolution sintering and small hubble Time (s)

Results

From figure A, the stability of the solid disc allow to find the dissolution rate through a known surface. Figure B teach us that the formation of bubbles makes the apparent weight to rapidly decay, and suddenly increase when the bubble release from the sample. When all the gas is removed from the sample, the dissolution rate is quite similar to that of the solid disc, due to the similar geometry. The figure C show an extensive infiltration phase. Sintering occurs simultaneously with the dissolution, preventing disintegration of the powder after some time. Figure D show that powder see a period of flotation after the injection, while the main infiltration phase occurs. Larger disintegrations can be seen and stop when the sintering is strong enough. Gas release can be seen all along the

dissolution, due to the phase change involved in sintering. Finally, figure E show that the dissolution rate of the complex dissolution of an evolving contact surface raft slowly stabilize over time.

Conclusion

The method presented here clearly shows the increasing difficulty of the different macrostructure. Still, the gravimetric method allows estimation of the dissolution rate, the bubble release and the degree of disintegration of the alumina raft. This information will finally reveal how the rafts dissolve.

Acknowledgement

The authors want to thank Rio Tinto, the Natural Sciences and Engineering Research Council of Canada and the Fonds de recherche Nature et technologies of Quebec fort heir technical and nancial support for this project.

La dissolution de l'alumine dans les cuves d'électrolyse implique plusieurs phénomènes simultanés. Ces phénomènes incluent la solidification et la refonte de l'électrolyte, la flottaison et l'infiltration du radeau en contact avec le liquide ainsi que le frittage et la dissolution de l'alumine. Afin de séparer l'impact de chaque phénomène, une étude paramétrique sur l'impact de la structure macroscopique de l'alumine sur sa dissolution a été exécutée en utilisant un appareil de gravimétrie. Le comportement attendu de ces différents phénomènes est ensuite décrit pour permettre l'analyse des courbes obtenues. Ainsi, la dissolution de disque non poreux submergé permet d'obtenir le comportement en dissolution de l'alumine, avec un minimum d'interférence. L'utilisation de disque poreux renseigne sur l'infiltration du liquide et le dégagement de bulles. L'injection de poudre contrainte dans un cerceau permet d'ajouter l'effet du frittage et de la désintégration du radeau en conservant une géométrie connue. Une seconde série de poudre contrainte en surface permet de mesurer l'impact de l'interface sur la dissolution. Une dernière série d'injection de poudre non contrainte en surface reproduit davantage la réalité industrielle. Finalement, l'analyse de ces résultats permettra de quantifier les effets de chaque phénomène afin de faire la lumière sur le comportement de l'alumine une fois injectée dans la cryolite

Alumina dissolution in electrolysis cells see several phenomena happening simultaneously. These phenomena include the solidification and remelting of the electrolyte, the flotation and infiltration of the raft by the liquid as well as the sintering and dissolution of the alumina. To understand each respective behavior, a parametric study on the macroscopic structure of the dissolving alumina has been executed with a gravimetric apparatus. The expected behavior of each phenomenon is described for a proper analysis of the resulting curves. The first set of tests was performed on non-porous discs immersed in cryolite to observe the dissolution behavior of alumina with minimal perturbations. Next, porous discs were used to see the effect of the infiltration and the release of bubbles. Then, powder injections constrained in a ring add the effect of the sintering of the alumina and the disintegration of the raft. A similar set of constrained powder floating at the surface introduces the effects of the interface to the measured curves. The last set of injections, unconstrained, tend to reproduce the behavior encountered in industrial cells. Finally, the curves' analysis is expected to quantify the effect of each phenomenon to give a better explanation of the alumina dissolution behavior in cryolite

Étude numérique de l'écoulement gazeux du dioxyde de carbone dans une cuve d'électrolyse

Numerical study of the gas flow from carbon dioxide in an aluminum electrolysis cell

Context

Primary aluminum production, using the Hall-Heroult process, is a complex process involving the electrolysis of the alumina with the following base reaction : $2 A l_2 O_3 + 3 C \rightarrow 4 A l + 3 C O_2$

The alumina is dissolved in an electrolyte, and the electrical current flows through prebaked anodes to produce the aluminum. (Left figure)

The Carbon dioxide gas creates bubbles underneath these anodes, while buoyancy forces cause these bubbles to travel along the anode's base before they rise beside the anode.

These bubbles, of different size are generated with a high frequency, and travel out of the electrolysis cell through a series of channels and cavities adjacent to the anodes. The middle and left figure clearly illustrates the typical bubble heterogeneity that we can observe in a cell. The middle figure was obtained by Poncsak et al. using a air-water

system, while the left one was obtained using an high temperature see-through cell (Yang et al.). In both cases, we can observe smaller bubbles surrounded by larger one that are the results of coalescence between numerous bubbles.

Primary Production of Aluminum Shape of University of Cambridge

Problematic and Goal of the study

As the bubbles escape the electrolysis cells, they generate a gas flow underneath the crust with difference in its spatial velocity and CO₂ concentration leading to two main objectives:

ping a numerical simulation tool to reproduce the gas flow adjacent to the anode and crust cavities of the cell. A. Devel

B. Provide a gas concentration map to pinpoint the areas with the highest CO_2 concentrations.

Methodology

- To achieve the goals of this work. Simulation of airflow in different conditions will be done using ANSYS. Fluent software allows for fully simulated flow. It can determine the volume or molarity, concentration and thermodynamic characteristics of the carbon dioxide gas based on specific set of input conditions.
- The cell geometry will be reproduced, with special considerations for the areas composed of cavities and channel adjacent to the anodes and underneath the anode cover material.

ns [2] Inner laver : The entry point of the CO₂ bubbles for the model will be defined by the bath/gas into

- A characteristic map of the CO₂ generation density (frequency and bubble size distribution) will be developed using previous work from Poncsak S. [10] .
 - A simulator was previously developed to compute bubble volume and equivalent spherical radii at every time step, using the Rayleigh equation. Then, the growing bubble's shape and the characteristic
 - dimensions (contact radius, maximal horizontal radius, height) were computed using the equilibrium shape of a sessile bubble in a CO2- carbon-molten cryolite system.
- Using this simulator, a characteristic map will be applied on the perimeter of the anodes at the bath/gas interface. Different anode conditions (e.g., new vs. old), or different current densities, will generate other CO2 generation density profiles and be considered in the study.

Outer layer A: The principal output layer of the high-mesh density model will be defined at the upper surface of the anode cover material. It includes the areas, with minimal external mixing and leading to the highest CO₂ concentration. Outer layer B : The overall cell superstructure of the cell will also be considered, with less accuracy, in order to identify the pressure variations resulting from different operating conditions

- Differences in pressure from the gas treatment center exhaust rate
- Difference in pressure from the hooding conditions.
- Difference in anode crust porosity.

Determination of volume and thermodynamic characteristics of CO₂ gas will play an important role and heat transfer characteristics will also be considered.

Literature and Expected Results CFD modeling of the gas flow in electrolysis cells has been done several times in the

- literature. However, the central region of interest is typically either in the electrolysis bath itself ([5]) or focused on the gas flow leading to the gas treatment center ([7]).
- In both types of simulation previously performed, the main region of interest for our specific study, in between the bath and the anode cover material, was not considered, or only with a minimal level of details.

The expected results will deliver a high-definition velocity and gas concentration profile in the region of interest described in the previous section. The work from ([8]) is an excellent example of the accuracy of results that we can obtain with such types of simulations.

101 CANNESS KOUT AN CONTRA velocity vectors in the inter-anode areas (in the bath)[8]

Different case scenario will be simulated with variations at the inner and outer layers of the model in order to quantify the qualitative and quantitative effect of various operating conditions

- Input conditions at the inner layer: 1.Variation of the cell amperage
 - 2. Variation in the anode slots desi

The project will offer important information on the gas flow and CO₂ concentration in

- Increase the understanding related to the transport of materials within the electrolysis
 - cells.
- Precise the gas concentration at the feeder holes, where CO₂ could eventually be trapped to reduce global greenhouse gas emission:
- 3. Evaluate the sensitivity of different factors, such as amperage, cell exhaust rate, etc. on the resulting gas velocity and CO_2 concentration.

Acknowledgments

The authors would be like to express their gratitude to Rio Tinto Alcan and Natural Sciences and Engineering Research council Canada for their financial support.

Reference

- [1] Sándor Poncsák, László I Kiss (2012)"Bubble layer simulator used for the design of aluminum electrolysis cells "
- [2] Youjian Yang (2021)" Study on the Inter-Electrode Process of Aluminum Electrolysis "
- [3] László I Kiss (2006) "Transport processes and bubble driven flow in the Hall-Héroult cell"
- [4] Alton T. Tabereaux, Ray D. Peterson (2014)" Treatise on Process Metallurgy: Industrial
- [5] László I. Kiss, Sándor Poncsák, Jacques Antille (2005)" Simulation of the bubble layer in aluminum electrolysis cells"
- [6] Sándor Poncsák, László I Kiss (2016)" Effect of the bubble growth Mechanism on the Spectrum of voltage fluctuation in the reduction cell"
- [7] Sándor Poncsák, László I Kiss (2012) "Bubble layer simulator used for the design of aluminum electrolysis cells "
- [8] Peter J. Witt, Yuqing Feng, Ingo Eicks and M. Phil Schwartz(2012) " Modeling
- bubble flow with cfx and fluent for aluminum reduction cells
- [9] Ruijie Zhao (2015)" Ansys, simulation and optimization of ventilation of aluminum
- smelting cells and potrooms for waste heat recovery"

[10] Sandor Poncsak (2000) "Formation et evolution des bulles de gaz au-dessous de

ode dans une cuve d'electrolyse d'aluminium"

AXE 1 : PRODUCTION DE LUMINIUM PRODUCTION L'ALUMINIUM

Mohammadreza Basohbatnovinzad UQAC

Lukas Dion UQAC Simon-Olivier Tremblay UQAC Sébastien Guérard **Rio Tinto** Jean-François Bilodeau **Rio Tinto**

Pendant l'électrolyse, l'alumine est dissoute dans un bain de cryolite à une température d'environ 970°C. Simultanément, les anodes de carbones réagissent pour former du dioxyde de carbone. Ce CO₂ se présente sous forme de bulles en dessous des anodes et la flottabilité de celle-ci les force à voyager le long de la base de l'anode, pour s'échapper le long de ses parois. Ces bulles sont générées à haute fréquence, et sortent de la cuve d'électrolyse en passant à travers une série de passages et de cavités. L'objectif du projet présenté est de reproduire la géométrie de ce réseau de cavités afin de simuler l'écoulement de gaz sous différentes conditions d'entrée et de sortie au sein d'un modèle mathématique. La variation dynamique du rythme de génération des bulles ainsi que les variations de pressions de sortie seront considérées. Les caractéristiques volumiques et thermodynamiques du CO, seront également prises en considération. Ce projet offrira de l'information importante concernant l'écoulement et la concentration de CO, dans les différentes régions de la cuve d'électrolyse, particulièrement près des doseurs d'alumine, ce qui permettra de mieux évaluer le potentiel de séquestration du CO, afin de réduire les émissions globales de GES produites par le procédé.

In an aluminum reduction cell, alumina is dissolved in cryolite at approximately 970 °C. During electrolysis, carbon anodes react to form carbon dioxide while aluminum accumulates in the bottom of the cell. Carbon dioxide gas creates bubbles underneath the anode, while buoyancy forces cause these bubbles to travel along the anode's base before they rise beside the anode. These bubbles are generated with a high frequency and travel out of the electrolysis cell through a series of channels and cavities adjacent to the anodes. The main goal of the project is to reproduce the geometry of these cavities and simulate the airflow under different conditions at the inner and outer layers of our mathematical model. Dynamic variations of the bubble's generations as well as changes in the outlet pressure will be considered in the simulations. Determination of volume and thermodynamic characteristics of CO₂ gas will play an important role and heat transfer characteristics will be considered. The project will offer significant information on the gas flow and CO2 concentration in different cell regions, particularly at the feeder holes where CO2 could eventually be trapped to reduce global greenhouse gas emissions.

2.

Effet de la méthode de refroidissement sur les propriétés de l'anode crue Effect of cooling method on green anode properties

Introduction

à Chicoutimi

Green anode cooling is the final stage in the production of green anodes and affects the green anodes quality and consequently the baked anode quality. Green anodes, after the compactor, have a low mechanical strength because of high temperatures. For further handling, they need to be cooled, which is done by immersion in water, water spray, forced or free air or their combination. This study focuses on the impact of forced-air cooling at three different air velocities on the electrical resistivities of green anodes.

Objectives

The objective of this study is to determine the impact of the green-anode cooling method on final anode properties. The work involves experimental testing and mathematical modelling using ANSYS. The objective of the work presented in this poster is to determine the effect of forced air cooling on the electrical resistivity of green anodes.

determined to evaluate the impact

of various cooling methods.

Mohammadhossein Dabaghi UQAC

> Duygu Kocaefe UQAC Yasar Kocaefe UQAC

Les anodes en carbone sont utilisées dans la production électrolytique de l'aluminium. La qualité des anodes affecte les coûts de production et les émissions de gaz à effet de serre (GES). La qualité d'anode est affectée par chaque étape du processus de production, y compris le refroidissement des anodes crues. La pâte d'anode est compactée à haute température pour former des anodes crues qui doivent être refroidies pour des manipulations ultérieures. De différentes méthodes sont utilisées pour le refroidissement : immersion dans l'eau, pulvérisation d'eau, à l'aide de l'air forcé ou libre ou leurs combinaisons. Il y a des gradients de température considérables à l'intérieur de l'anode pendant l'étape de refroidissement, où des contraintes de choc thermique peuvent introduire de nouvelles fissures fines et élargir les petites fissures existantes qui peuvent agrandir pendant la cuisson. Cela augmente la résistance électrique et par conséquent la consommation d'énergie durant l'électrolyse. Dans cette étude, l'impact du refroidissement de l'anode crue sur sa résistivité électrique est étudié. À l'UQAC, plusieurs anodes ont été fabriquées sous les mêmes conditions, puis refroidies sous des conditions différentes. Les résistivités électriques des anodes crues ont été mesurées, et l'impact de différentes méthodes de refroidissement a été évalué

to thermal stresses.

likely to increase the risk of crack initiation and growth due

Carbon anodes are used in the electrolytic production of aluminum. Anode quality affects production costs and greenhouse gas emissions (GHG). The anode quality is affected by every step of the production process, including the cooling of green anodes. Anode paste is compacted at high temperatures to form green anodes, which have to be cooled for further handling. Different methods are used for cooling: immersing in water, spraying water, using forced or free air or their combination. There are considerable temperature gradients inside the anode during the cooling stage, during which thermal shock stresses can introduce new fine cracks and enlarge existing small cracks that can further expand during baking. This increases the electrical resistance and consequently energy consumption during the electrolysis. In this study, the effect of green anode cooling on green anode electrical resistivity is investigated. In the UQAC carbon laboratory, multiple anodes were produced using the same raw conditions, and then cooled under different conditions The electrical resistivity of the green anodes was measured, and the impact of the different cooling methods was evaluated

- M. W. Meier, "Cracking behaviour of anodes," R &

D Carbon Limited, pp. 166-293, 1996.

AXE 1 : PRODUCTION DE L'ALUMINIUM ALUMINIUM PRODUCTION

Modélisation d'un réacteur à l'échelle de laboratoire pour la désulfuration des gaz d'échappement des cuves Modelling of a lab-scale reactor for the desulfurization of effluent gases from cells

Arash Fassadi Chimeh UQAC

Duygu Kocaefe UQAC Yasar Kocaefe UQAC Yoan Robert Rio Tinto Jonathan Bernier Rio Tinto

Les gaz produits par les cuves d'électrolyse contiennent du SO₂. Un procédé d'épuration du SO₂ permettrait de diminuer l'impact environnemental d'une usine d'électrolyse. Dans ce projet, un modèle a été dévelopé pour la capture du SO₂ à l'aide d'un absorbant alcalin (chaux hydratée, Ca(OH)2), via un procédé de désulfuration semi-sec dans un réacteur à l'échelle de laboratoire. Le procédé semi-sec est plus avantageux pour la capture du SO₂ par rapport aux procédés secs et humides à cause de leurs inconvénients, incluant les dépenses post-traitements et/ou l'usage de quantités excessives d'adsorbant. Le modèle implique l'écoulement multiphasique et turbulent avec une équation pour la vitesse de réaction entre le SO₂ et Ca(OH)2 dans le réacteur. Une étude paramétrique est réalisée pour analyser les effets de l'humidité et de l'absorbant sur le niveau de désulfuration. Le modèle et certains résultats sont présentés dans cette affiche. Effluent gases from the electrolysis cells contain SO₂. A SO₂ scrubbing process would reduce the environmental impact of an electrolysis plant. In this project, a model was developed for SO₂ removal, using an alkaline sorbent (hydrated lime, Ca(OH)2), through a semi-dry desulfurization process in a laboratory-scale reactor. The semi-dry process is more advantageous for sulfur capture compared to dry and wet processes due to the drawbacks associated with them, including the post-treatment expenses and/or the excessive sorbent usage. The model involves a turbulent multiphase flow with a rate expression representing the SO₂-Ca(OH)2 reaction in the reactor. A parametric study was carried out to analyze the effects of humidity and the sorbent on the level of desulfurization. The model and some of the results are presented in this poster.

AXE 1 : PRODUCTION DE L'ALUMINIUM

LUMINIUM PRODUCTION

Modélisation numérique de la mise en forme des anodes vertes Numerical Modelling of the Green Anode Forming Process

Olivier Lacroix Université Laval

Hisham Chaouki SAFI Quality Software Houshang Alamdari Université Laval Mario Fafard Université Laval

Le procédé de mise en forme des anodes vertes par vibrocompactage influence directement leur qualité ainsi que leurs propriétés. Le procédé actuel n'est toutefois pas optimal puisqu'on retrouve des gradients de densité importants dans les zones de grandes distorsions, notamment autour des tourillons, des rainures anodiques, des coins et des différentes arêtes. Ces gradients, en plus d'affecter les performances de l'anode dans la cuve, peuvent causer l'apparition de fissures lors de la cuisson ou même en opération. L'objectif du projet est de réduire les gradients de densité à l'aide d'outils de simulation numérique dans le but d'uniformiser la densité de l'anode verte. Un modèle numérique du procédé de mise en forme sera développé et permettra d'étudier l'effet de différents paramètres sur la distribution de la densité dans l'anode. La géométrie de l'anode – notamment la forme des rainures et l'ajout de chanfreins ou d'arrondis aux coins et aux arêtes –, l'orientation dans le moule, la distribution initiale de la pâte dans le moule, la lubrification ainsi que la température du moule seront examinées. Une optimisation de la géométrie de l'anode et de son moule sera finalement effectuée en se basant sur les résultats obtenus lors des différentes étapes d'investigation numérique. The green anode vibrocompaction forming process has a significant influence on the anode's quality and properties. The forming process is not optimal, however, as density gradients are present in zones where the paste is subjected to major distortions, primarily around the stub holes, the grooves and the different corners and edges of the anode. These gradients affect the anode's performance in the cell negatively and can cause cracks to appear during the baking process or in operation. The objective of this project is to reduce the negative effects of these density gradients and improve the properties of the anode using numerical simulation tools to improve the density uniformity of the green anode. A numerical model of the forming process will be developed to study the effects of different parameters on the anode's density distribution. The anode's geometry, such as the depth and width of the grooves and the addition of chamfers or fillets to the corners and edges, the mould's orientation, the initial paste distribution, lubrication and temperature of the mould will be examined. An optimization of the anode and the mould's geometry will be performed based on the results obtained from the various stages of the numerical investigation.

Étude de la fluorescence de l'alumine et des composés fluorés Study of alumina fluorescence and fluorescent elements

Introduction et problématique

Résultats et discussions

Dans un four

Au sein de travaux antérieurs réalisés par le GRIPS, une variation de la fluorescente ultraviolette de l'alumine et du bain électrolytique a pu être remarqué. Toutefois, aucune étude détaillée portant sur ce phénomène n'a

pu être recensé dans la littérature. Parmi les variables d'entrées pouvant exercer une influence significative

sur ce phénomène, deux paramètres spécifiques ont été retenus: les conditions de refroidissement et la

chimie du bain. Il faut donc déterminer quels sont les comportements fluorescents du bain et de l'alumine et

d'isoler leurs causes, pour possiblement utiliser ces propriétés comme outil de recherche. Une expérience

sur le refroidissement de la cryolithe a été effectuée pour observer son impact sur la fluorescence. Après

avoir fait varier les conditions de refroidissement de plusieurs échantillons, un changement caractéristique

a été remarqué. L'état de fluorescence, notamment les couleurs observées, ont pu être relié aux différentes

phases de la cryolite suivant différentes vitesses de cristallisation. Le taux de refroidissement crée un modèle

de couleur reproductible, alors qu'un changement chimique change la fluorescence de façon encore incom-

prise, puisque les cristaux y sont différents. Une étude poussée associée à la thermodynamique au sein du

bain est recommandée pour utiliser cette technique comme potentiel outil de recherche.

Température ambiante #2

With previous research activities realized by the GRIPS, variations of the ultraviolet fluorescent response of the alumina and cryolite bath were observed. However, little details concerning this phenomenon has been reported in the literature. Out of the factors which may significantly influence this response, two specific parameters were considered: the cooling rate and the chemistry of the electrolysis bath. The main purpose of this study is to understand the fluorescence of the bath and the alumina and isolate their causes, to possibly use fluorescence as a research tool. An experiment designed to understand the effect of the cryolite cooling has been done to understand its impact on fluorescence. After varying the freezing rate under different sets of conditions, a characteristic change was observed. The fluorescence state, and specifically the color patterns, were linked to different phases in the cryolite following different cooling rates. The cooling rate of the sample creates a reproducible pattern, while the chemistry change changes completely the color patterns due to the formation of different crystals. Additional research on fluorescence emissions combined with a detailed study of the thermodynamics found in the bath is recommended for a potential use of fluorescence as an efficient research tool.

UQAC Lukas Dion UQAC László I. KISS UQAC **Jonathan Alarie** UQAC **Guillaume Bonneau** UQAC Sébastien Guérard, Jean-Francois Bilodeau Rio Tinto

Sophie Ménard

Modélisation du comportement des agrégats d'alumine à l'interface bain-métal d'une cuve d'élecrolyse

Modeling of the behaviour of an alumina agglomerate at the bath-metal interface in an electrolysis cell

La dissolution de l'alumine est un aspect primordial de la production d'aluminium puisqu'elle a des conséquences directes sur la stabilité, la productivité et la durée de vie de la cuve d'électrolyse. Lorsqu'elle est injectée, l'alumine tend à former des agglomérats pouvant couler jusqu'à l'interface bain-métal et même jusqu'au fond de la cuve formant ainsi une boue qui affecte l'intégrité de la cuve. Afin d'identifier la solution optimale à ce problème, il est nécessaire de mieux comprendre son comportement. Ainsi, le déplacement des agglomérats lors de leur chute a été modélisé à l'aide d'équations de sommation des forces. Les échantillons considérés par le modèle sont de forme cylindrique; leur diamètre et leur densité sont les paramètres d'entrées. La différence de densité entre les fluides qui entrent en jeu, la tension interfaciale, la géométrie de l'échantillon et la hauteur de chute sont les principaux facteurs considérés qui influencent le potentiel de pénétration de l'interface. Le modèle mathématique a été validé au moyen d'un montage analogue à base d'eau et d'huile de silicone. Subséquemment, la courbe de comportement a été transposée vers le milieu industriel composé de bain électrolytique et d'aluminium. Les résultats extraits du modèle pourront être utilisés pour émettre des recommandations associées à l'injection d'alumine. Alumina dissolution is a very important component in the production of aluminium because it has direct consequences on the stability, the productivity and the lifetime of the electrolysis cell. When injected, alumina tends to form multiple agglomerates which can sink to the bath-metal interface and even to the bottom of the cell where they become sludge that affects the cell's integrity. In order to identify the optimal solution for this problem, it is crucial to understand its detailed behavior. Consequently, the modelling of alumina agglomerates sinking in the cell has been done with the help of forces equations. The samples used in the model are cylinders, with their diameter and their density being the main input parameters. The mathematical model uses the density of the concerned fluids, the interfacial tension, the sample's geometry, and the sinking height as the principal factors with an influence on the potential to penetrate the interface. The model was validated using a water and silicon oil experimental setup. Which then allowed for a transposition of the results towards industrial conditions composed of electrolytic bath and molten aluminium. The results could eventually be used to submit recommendations associated to alumina injection systems within electrolysis cells. L'effet du taux de déformation et de l'emplacement de l'échantillon sur les propriétés de traction semi-solide de l'alliage AA5182

Effect of strain rate and sample location on semisolid tensile properties of AA5182 alloy

UQAC Université du Québec

Mohamed Qassem

Mousa Javidani UQAC Daniel Larouche Université Laval X-Grant Chen UQAC

Deux lingots A et B en alliage AA5182 coulés par (DC) avec différentes vitesses (60 et 85 mm/min) sont étudiés. Le lingot B présentait une fissure transversale de 25 mm de la surface. Les microstructures, incluant le (SDAS)en région sous-jacente ont été examinées. Le lingot B montrait une structure colonnaire dans la région sous-jacente, tandis que le lingot A présentait entièrement des grains équiaxes. Des échantillons de traction ont été préparés à partir de deux positions (3 mm et 22 mm de la surface). Les propriétés de traction à haute température sont évaluées à des températures entre 520 et 580 °C avec des taux de déplacement de 0,01 et 0,1 mm/s. La température de ductilité nulle et celle de résistance nulle qui présentent les limites de la plage de température fragile (BTR) sont identifiées. La zone intérieure de l'alliage B présentait (BTR) le plus élevé (29 °C) parmi toutes les conditions. La différence de (BTR) entre la zone extérieure (3 mm) et intérieure (22 mm) était plus élevée dans le lingot B (7°C) que dans le lingot A (2°C) à un taux de déplacement de 0,1 mm/s, ce qui montre sa haute sensibilité à la fissuration à chaud Two direct chill (DC) cast ingots of AA5182 alloy with different casting speeds (i.e., 60 mm/min and 85 mm/ min) were investigated, which is denoted as ingot A and B. The ingot B had a transversal crack propagated along 25 mm from the ingot surface. The as-cast microstructures including the secondary dendritic arm spacing in subsurface region were examined. Ingot B showed columnar grain structure in the subsurface region, whereas ingot A was entirely dominated by equiaxed grains. Tensile samples were prepared from two ingot positions (3 mm and 22 mm from the ingot surface), and the high-temperature tensile properties were evaluated at the temperature range of 520-580 °C and displacement rates of 0.01 mm/s and 0.1 mm/s. The zero-ductility temperature and zero-strength temperature, which are the boundaries of the brittle temperature range (BTR), were identified. The bulk zone of alloy B showed the highest BTR (29°C) among all conditions. The difference in BTR between shell zone (3 mm) and bulk zone (22 mm) was higher in ingot B (7 °C) relative to ingot A (2 °C) at the displacement rate of 0.1 mm/s, showing its high hot tearing susceptibility.

Armita Rastegari

Duygu Kocaefe

Yasar Kocaefe

UQAC

UQAC

UQAC

Amélioration de la qualité de l'anode par la modification du brai Improvement of anode quality through pitch modification

à Chicoutimi

Introduction

Carbon anodes fabricated from coke, recycled materials (butts, green and baked scrap), and coal tar pitch as a binder have an impact on the aluminum industry's energy consumption and environmental emissions (GHG). Thus, improving the anode quality is beneficial. To reduce energy consumption and environmental emissions (GHG) while increasing aluminum production, coke and pitch should have a strong bond, which results in good anode properties such as high density. Modifying the pitch is an important avenue for achieving these goals and continuously improving the process. As a result, pitch can be modified with additives to improve the binding between coke and pitch and to produce higher quality carbon anodes.

L'aluminium est produit à l'aide d'anodes en carbone dans la cellule d'électrolyse; ainsi, la qualité de l'anode est très importante pour l'industrie de l'aluminium. Toute amélioration de la qualité de l'anode est très importante pour l'industrie de l'aluminium. Toute amélioration de la qualité de l'anode entraînera une réduction de la consommation d'énergie, des émissions de gaz à effet de serre (GES) et du coût. Cela améliorera également la production. La qualité de l'anode. La modification du brai par un additif est une des pistes possibles pour améliorer la qualité de l'anode. La modification du brai par un additif est une des pistes possibles pour améliorer la qualité de l'anode. La modification du brai par un additif est utilisé pour modifier deux types de brai avec des teneurs différentes en QI. Les anodes ont été fabriquées avec des brais modifiés et non modifiés et les propriétés de l'anode (densité apparente de l'anode, réactivités à l'air et au CO₂, résistivité électrique, perméabilité à l'air) ont été mesurées. Ces propriétés ont été comparées à celles des anodes produites avec les brais non modifiés (anode standard) afin de déterminer l'effet de la modification du brai sur la qualité de l'anode.

Aluminum is produced using carbon anodes in the electrolysis cell; thus, the anode quality is very important for the aluminum industry. Any improvement in the anode quality will lead to reduction in energy consumption, greenhouse gas (GHG) emissions, and the cost. It will also improve the production. The quality of the raw materials (both pitch and coke) is one of the important factors that determine the anode quality. Modifying pitch with an additive is one of the possible avenues to improve the anode properties. Additive increases the functional groups present on the surface of pitch and thus the coke-pitch interactions. In this study, one type of additive is used to modify two types of pitch with different QI contents. The anodes were produced with modified and non-modified pitches and the anode properties (anode apparent density, air and CO₂ reactivity, electrical resistivity, and air permeability) were measured. These properties were compared with those of the anodes with non-modified pitch (standard anode) in order to determine the effect of pitch modification on anode quality.

Amélioration d'un modèle mathématique de l'interface bain métal animé par les vagues et les courants et leurs effets sur le déplacement de radeaux d'alumine Improvements to a mathematical model used to reproduce the wave and flow at the bath-metal interface and assess their impact on the movement of alumina rafts.

RioTinto

Thomas Richer UQAC Lukas Dion UQAC László I. Kiss UQAC Sébastien Guérard Rio Tinto François Bilodeau Rio Tinto Guillaume Bonneau, Martin Truchon UQAC

Un modèle mathématique publié précédemment par le même auteur reproduit le mouvement de l'interface bain métal dans une cellule d'électrolyse. Ce modèle a été rapproché de l'industrie en développant le mouvement de l'interface et des radeaux d'alumine dans les coordonnées tridimensionnelles. Pour accomplir cet objectif, l'équation d'onde a été résolue selon les 3 phénomènes connus de l'interface bain métal. Ces phénomènes incluent de hautes forces de Lorentz près des bords de la cuve, la résonnance naturelle du bassin lié à sa géométrie et les vagues de plus faibles amplitudes créées par des perturbations de l'interface. Outre les défis de modélisations que comprend une interface tridimensionnelle animée de phénomènes complexes, il a été nécessaire d'introduire les concepts de «courants», de « force interfaciale» et de « poussée hydrostatique». En conséquence, le modèle reproduit le mouvement d'une flotte de radeau et les forces qui produisent ces mouvements. L'étude des mouvements des radeaux sur de courte ou moyenne simulations éclaire la contribution des radeaux à plusieurs phénomènes tels que la formation de « boue» à la surface de la cathode. Cet article détaille les différentes modifications apportées au modèle depuis la dernière publication, explique clairement la théorie derrière chaque phénomène pris en compte et démontre les applications potentielles du simulateur pour comprendre des phénomènes de l'industrie. A mathematical model has been developed to reproduce the tridimensional interface between bath and metal in an electrolysis cell. In the last year, the mathematical model has been adapted to consider alumina rafts' movements in tridimensional coordinates. To reproduce a bath-metal surface, the wave equation was solved around three main phenomena known to occur in operating pots. The specific solution includes strong Lorentz force at the edge of the cell, the natural resonance of the geometry and impulse from perturbation. Among the geometrical challenges inherent to such improvement, it was necessary to properly introduce concepts such as "flow", "interfacial forces", and "buoyancy force". Hence, the model uses interfacial phenomena to reproduce the movement of alumina rafts at the bath-metal interface. The potential of such tracking is shown in different cell conditions. This paper detail the scope of the modifications applied to the model describes in detail the step used to characterize both interface and rafts and show the raft tracking potential for industrial application.

Effet de la pression statique sur le problème de collage des anodes lors du processus de cuisson Effect of Static Pressure on Anode Sticking Issue in Baking Process

Les anodes de carbones, utilisées pour la production de l'aluminium primaire, sont recouvertes de coke de calage afin de prévenir leur oxydation lors de leur cuisson. La cuisson des anodes est une étape critique en raison de l'évolution significative de la microstructure des anodes, leur confère les propriétés mécaniques et électriques souhaitées pour le procédé Hall-Héroult. Lors de ce processus, cependant, le coke de calage adhère occasionnellement à la surface des anodes, ce qui affecte négativement leur efficacité. Étant donné que trois anodes sont empilées verticalement dans les fours, la pression exercée par les anodes supérieures peut forcer le brai hors des anodes inférieures et est l'une des raisons possibles de l'adhésion entre les anodes. Ce phénomène contribue à l'adhérence du coke de calage adjacent aux anodes. L'objectif du projet est d'évaluer la perte de brai dans les anodes en suivant sa distribution dans l'anode à l'aide d'un marqueur. Des composants contenant des éléments étrangers (ZnO, FeO et Bi₂O₃) ont été ajoutés au brai. Leur degré de mélange a été évalué par des analyses SEM et EDS. Des anodes de laboratoire ont été produites avec un ratio de brai optimal, permettant de maximiser la densité des anodes cuites. Le brai contenait initialement 1 % massique du marqueur Bi₂O₃. Les anodes ont ensuite été cuites sous des pressions statiques de 0 kPa, 25 kPa et 50 kPa. Les résultats préliminaires indiquent que le phénomène d'adhésion se produit principalement sur les anodes inférieures. Carbon anodes, for aluminium smelting, are baked under the coverage of packing coke preventing their oxidation. Baking is a critical step due to significant evolution in anode microstructure leading to their desirable mechanical and electrical properties for Hall-Héroult process. During this process, however, packing coke occasionally sticks on anode surfaces, which negatively affects their productivity. Given that three anodes are vertically stacked in furnaces, one feasible reason for anode sticking is coal-tar-pitch (CTP) squeezing out of the bottom anodes during baking because of the static pressure exerted by the top ones. It contributes to adjacent packing coke sticking to anodes. The aim of this work was to verify pitch squeezing by tracking its distribution in the anode with a tracer. Components containing foreign elements [ZnO, FeO, and Bi₂O₃) were added to CTP. Their degree of mixing was evaluated by SEM and EDS analyses. Lab-scale anodes were produced with an optimized pitch ratio on which the anodes have the maximum baked density. This CTP contained 1 wt. % Bi₂O₃ as an appropriate marker. The anodes were then baked under static pressures of 0 kPa, 25 kPa, and 50 kPa.

Nafiseh Shadvar Université Laval

Guillaume Gauvin Université Laval Simon Laliberté-Riverin Université Laval Julien Lauzon-Gauthier Alcoa

Identification des intrants affectant les propriétés optiques du bain électrolytique Identification of the inputs affecting the optical properties of the electrolytic bath

> UQAC Université du Québec à Chicoutimi

Motivation

d'expérimentations.

Montage #1

d'alumine

Montages expérimentaux

Le premier montage qui a été utilisé pour

déterminer la profondeur perceptible et l'indice de réfraction est un système de gravimétrie

permettant de descendre l'échantillon à un rythme youlu dans le bain cryolitique.

La profondeur perceptible est atteinte lorsqu'un

disque blanc en alumine (disque de Secchi [1])

L'indice de réfraction est calculé à partir de la

n'est plus perceptible à la caméra.

position d'un laser envoyé sur

Plusieurs sujets de recherche du GRIPS requièrent d'observer et de filmer des phénomènes à partir du dessus d'un bain cryolitique. Connaitre les propriétés optiques du bain d'électrolyse et l'effet des différents intrants permettrait de choisir les conditions optimales pour faire des observations claires lors

le disaue

1- Développer une formule de la distance perceptible dans le bain cryolitique en

Objectifs

fonction de différents facteurs 2- Mettre au point une méthode permettant de mesurer l'indice de réfraction d'un bain d'électrolyse

3- Mesurer le spectre d'émission du mélange crvolitique.

Références

Tyler, J. E. (1968). THE SECCHI DISC. Limnology and oceanogr 13(1), 1-6. doi:10.4319/in.1968.13.1.0001 Zhuxian, Q., Liman, F., Grjotheim, K. et Kvande, H.. (1987). Fo of metal fog during molten sait electrolysis observed in a see cell. Journal of applied electrochemistry, 17(4), 707-714.

doi:10.1007/bf01007805 Janz, G. J. (1967). Molten Salts Handbook

nology and oceanography

être utilisée pour choisir un filtre de caméra optimal. L'équipe saura maintenant qu'il faut éviter la présence d'aluminium, réduire la concentration en alumine et mettre un filtre atténuant progressivement les hautes

longueurs d'onde pour faire des observations de qualité. Remerciements RioTinto Les auteurs souhaitent remercier Rio Tinto et le CRSNG pour leur support financier. CRSNG

Samuel Théberge UQAC

Lukas Dion UQAC László I. Kiss UQAC Jean-Francois Bilodeau Sébastien Guérard Rio Tinto **Guillaume Bonneau** UQAC

Peu d'informations concernant les propriétés optiques du bain électrolytique sont disponibles. Ainsi, des tests ont été effectués pour déterminer certaines propriétés optiques afin d'obtenir de meilleures observations lors des expérimentations. Les propriétés étudiées sont la distance perceptible en fonction de divers facteurs, la détermination de l'indice de réfraction et l'étude du spectre d'émission. Les facteurs utilisés pour faire varier la visibilité sont la composition chimique du bain électrolytique, la surchauffe, le brassage, l'ajout de carbone et l'ajout d'aluminium. Les essais ont permis de constater que la présence d'aluminium est le paramètre qui diminue le plus la visibilité par la création d'une brume de gouttelettes métalliques. La présence accrue d'alumine et de carbone diminue également beaucoup la visibilité. Puis, les essais réalisés ont également permis de démontrer le bon fonctionnement d'une nouvelle approche pour estimer l'indice de réfraction du bain cryolitique. En traquant le déplacement d'un laser, l'indice de réfraction moyen a été mesuré à 1.28. Enfin, la composition du spectre d'émission de l'incandescence du bain cryolitique a été mesurée à l'aide d'un spectromètre dans le but de choisir un filtre de caméra idéal. L'incandescence du bain à 1000°C s'intensifie à 600nm et augmente jusque dans l'infrarouge.

Little information about the optical properties of the electrolyte bath is available. Thus, tests were carried out to determine certain optical properties in order to obtain better observations during the experiments. The properties studied are the perceptible distance according to various factors, the determination of the refractive index and the study of the emission spectrum. The factors used to vary the visibility were the chemical composition of the electrolyte bath, superheating, stirring, addition of carbon, and addition of aluminum. The tests found that the presence of aluminum is the parameter that decreases visibility the most by creating a fog of metallic droplets. The increased presence of alumina and carbon also greatly decreases visibility. Then, the tests carried out also allowed to demonstrate the good functioning of a new approach to estimate the refractive index of the cryolitic bath. By tracking the displacement of a laser, the average refractive index was measured at 1.28. Finally, the composition of the emission spectrum of the cryolitic bath incandescence was measured using a spectrometer in order to select an ideal camera filter. The bath incandescence at 1000 °C intensifies at 600 nm and increases into the infrared.

Bio liant hybride en remplacement du brai de goudron de houille dans les anodes précuites

Hybrid bio binder as a replacement for coal tar pitch in pre baked anodes

Marie Aimée Tuyizere Flora Université Laval

> Guillaume Gauvin Université Laval Simon Laliberté-Riverin Université Laval Julien Lauzon-Gauthier Alcoa Thierry Ollevier Université Laval Houshang Alamdari Université Laval

Le biobrai (BP) dérivé de l'huile de biomasse a le potentiel de remplacer le brai de goudron de houille (CTP) comme liant dans les anodes précuites pour la production d'aluminium. Le CTP libber des hydrocarbures aromatiques polycycliques qui sont cancérigènes, lorsque brûlés. La composition moléculaire du BP entraîne une forte perte de masse lors de sa carbonisation en biocoke. Ainsi, elle réduit la valeur de cokéfaction (CV) du BP à moins de 45 % massé., ce qui est problématique pour obtenir une anode de qualité présentant une faible porosité. L'introduction d'additifs dans la biohuile pendant sa pyrolyse pourrait potentiellement réduire la perte de masse et augmenter le CV du BP. L'objectif de cette étude est d'optimiser la pyrolyse de la biohuile en un bioliant hybride (HBB) afin d'élever son CV à presque celui du CTP (50-65) % en poids. Dans le présent travail, un mélange de biohuile avec 18 % masse, 25 % masse et 30 %masse de particules fines de coke de pétrole calciné (CPC) a été pyrolysé sous l'air jusqu'à 180 °C avec 0,5 °C/min, et un temps de trempage de heure. Les résultats préliminaires révèlent que la perte de masse diminue après la carbonisation du HBB. Le CV du HBB augmente de plus de 45 % en poids avec des ratios de CPC ultrafins et le point de ramollissement est toujours inférieur à 90 °C comparés à (100 -120) °C du CTP. Bio-pitch (BP) derived from biomass oil has the potential to replace coal tar pitch (CTP) as a binder in prebaked anodes for aluminum production. PTC releases polycyclic aromatic hydrocarbons that are carcinogenic when burned. The molecular composition of BP results in a high loss of mass during its carbonization in bio-coke. Thus, it reduces the coking value (CV) of BP to less than 45% mass, which is problematic to obtain a quality anode with low porosity. The introduction of additives into the bio-old during its pryolysis could potentially reduce the mass loss and increase the CV of the BP. The objective of this study is to optimize the pyrolysis of bio-oil into a hybrid bio-binder (HBB) in order to raise its CV to almost that of PTC (50-65) wt%. In the present work, a mixture of bio-oil with 18 wt%, 25 wt% and 30 wt% fine particles of calcined petroleum coke (CPC) was pyrolyzed under air up to 180 °C with 0.5 °C/min, and a soak time of 1 hour. Preliminary results reveal that the mass loss decreases after carbonization of HBB. The CV of HBB increases by more than 45 wt% with ultrafine CPC ratios and the softening point is still below 90 °C compared to (100 - 120) °C of CTP.

AXE 2

TRANSFORMATIONS ET APPLICATIONS TRANSFORMATION AND APPLICATIONS

Axe | Axis 2

Répertoire des affiches | Posters directory

Les étudiants dont le nom est suivi d'un astérisque (*) sont récipiendaires d'un prix d'excellence pour leur affiche. Students whose name is followed by an asterisk (*) are recipients of an award of excellence for their poster.

Mohamed Ahmed

Développement de nouveaux métaux d'apport 4xxx pour le soudage de l'aluminium : effet de Mn et Mg sur l'évolution de la microstructure et sur les propriétés mécaniques	31	
Ahmed Algendy* L'effet des ajouts de Sc et de Zr sur la microstructure des dispersoïdes et les propriétés mécaniques du produit AA5083 laminé à chaud		
Belkacem Amara* Effet de Sc sur le processus d'extrusion des alliages d'aluminium 1xxx pour les échangeurs de chaleur	33	
Alyaa Bakr Effet de Sc sur le processus d'extrusion des alliages d'aluminium 1xxx pour les échangeurs de chaleur		
Bienvenu Boli Modélisation et caractérisation des structures hybrides bois/aluminium pour les glissières de sécurité de ponts routiers		
Pascal Boudreau* L'utilisation de l'aluminium comme vecteur énergétique durable	36	
Liying Cui* Développement d'alliages entropiques légers Al-Cu-Zn-Mg avec haute résistance mécanique à température élevée	37	

Olivia Carolina da Rosa

Évaluation numérique et expérimentale du comportement thermique de murs rideaux intelligents avec un cadre en aluminium	.38
Sahar Dahboul* Étude expérimentale concernant la stabilité locale des sections complexes et des sections creuses rectangulaires en aluminium de ponts routiers	
Papa Mamadou Diop Degré de sophistication requis pour la modélisation dynamique d'un pont hybride acier-aluminium avec tablier orthotrophe en aluminium extrudé	.40
Ali Elasheri Nucléation et transformation de dispersoïdes contenant de Zr dans les alliages Al-Mg-Si 6xxx	41
Thomas Fortin Analyse du coût de cycle de vie du premier pont routier en aluminium	42
Hubert Gauvin Réaction des alliages AuraITM au traitement d'homogénéisation	43
Abhishek Ghosh L'évolution microstructurale et les mécanismes d'adoucissement dynamique de l'alliage Al-Mg-Si-Zr-Mn lors de la déformation par compression à chaud	44

Chaima Hajji

L'effet d'empoisonnement par le Cr sur l'affinage des grains dans les alliages d'aluminium corroyés 6111	.45
Peng Hu Amélioration de la résistance à la fatigue oligocyclique à empérature élevée de l'alliage de fonderie Al-Cu par microalliage avec Mg	.46
Seyed Sajjad Jamali Modélisation thermomécanique-microstructurale couplée appliquée aux alliages d'aluminium	47
Mohammad Khoshghadam-Pireyousefan Développement d'une nouvelle génération de câbles conducteurs en aluminium	48
Louis Lecointre Étude du soudage par friction malaxage avec outil à double-épaule- ment de l'aluminium	49
Liya Li Étude expérimentale concernant la stabilité ocale des sections creuses circulaires en aluminium	50
Saeed Mohebbi Analyse de flambement non linéaire d'éléments en aluminium dans des tours de transmission d'énergie	51
Marzieh Nodeh Caractérisation des effets de l'humidité et de la température sur le comportement en fatigue des joints collés en aluminium	52
Rania Nuamah Matériaux nanostructurés synthétiques sur mousse de cickel et aluminium pour l'application énergétique	53
Esmaeil Pourkhorshid Les propriétés mécaniques et la microstructure de l'alliage AlSi10Mg après procédé de fusion sélective par laser	.54
Lida Radan Étude de l'effet du traitement thermique sur la microstructure et la dureté des alliages d'aluminium-lithium pour les applications aérospatiales	55
Quan Shao Développement des conducteurs en alliage Al-Zr-Sc pour les applications à température élevée	56
Sandrine Anicette Tcheuhebou Tina Prédiction et amélioration de la qualité des produits d'aluminium usinés	57
Kenza Marianne Sipereh Tinguery Fatique dans les joints soudés par friction malaxage à double épaulement dans les ponts en aluminium	.58
Mani Mohan Tiwari Préparation de surface pour le collage structural de l'aluminium avec des matériaux similaires et dissimilaires	61

Mahmoud Trimech

Comportement en fatigue des joints bout à bout- par recouvrement soudés par friction malaxage dans les profils extrudés pour application dans les platelages des ponts routiers en aluminium **60**

Développement de nouveaux métaux d'apport 4xxx pour le soudage de l'aluminium: effet de Mn et Mg sur l'évolution de la microstructure et sur les propriétés mécaniques

Developing novel 4xxx filler metals for aluminum welding: impact of Mn and Mg on microstructure evolution and mechanical properties bed fusion printed AlSi7Mg alloy through the Johnson Mehl Avrami model

Les alliages d'aluminium sont largement utilisés en industrie, où le soudage est la principale méthode d'assemblage. Les fils de soudure commerciaux d'AA4043 ne fournissent pas une résistance mécanique suffisante dans certaines soudures critiques. Alors, de nouveaux fils sont développés en ajoutant Mg et Mn à AA4043. Le soudage à l'arc sous gaz est utilisé pour assembler des plaques AA6011 d'épaisseur (6 mm) en utilisant les nouveaux fils développés. Les fils commerciaux (ER4043, ER4943 et ER5356) sont utilisés comme des références. Le microscope optique et le (MEB) sont utilisées pour caractériser la microstructure. Les propriétés mécaniques sont évaluées par des tests de microdureté et de traction. Les résultats montrent que les principaux constituants microstructuraux sont les intermétalliques en Fe, Mg₂Si, Si eutectique et *α*-Al. La dureté des joints bruts de soudage et traités thermiquement après soudage (PWHTed)) est considérablement améliorée en utilisant de nouveaux fils par rapport aux fils commerciaux. La résistance à la traction des joints bruts de soudage par les nouveaux fils est restée la même vu que les échantillons étaient tous fissurés en HAZ. Cependant, en état PWHTed, les joints des fils nouvellement développés présentaient une résistance plus élevée, comparée aux fils références. Aluminum alloys are extensively used in various industrial sectors, for all of which welding is the primary joining method. Usage of commercial weld fillers (e.g., AA4043) doesn't provide enough strength for some critical weld components. Therefore, novel weld fillers were developed by adding Mg and Mn to AA4043. Gas Metal Arc Welding was employed to join 6 mm thick AA6011 plates by using the new developed fillers; the commercial weld fillers (e.g., ER4043, ER4943, and ER5366) were also used as reference materials. The optical and scanning electron microscopies were utilized to characterize the microstructure. The mechanical properties were evaluated using the microhardness and tensile tests. The results showed that the main microstructure constituents are Fe rich intermetallics, Mg_SI, eutectic SI, and α -AI. Using the new fillers improved significantly the hardness of the joints (both in as-welded and post weld heat treated (PWHTed)) compared to joints welded by the commercial weld fillers. The tensile strength of the as-weld joints by new fillers remained in the same range, as the samples were all cracked in HAZ. However, in the PWHTed condition, the joints of the newly developed fillers presented higher strength relative to the reference fillers.

Mohamed Ahmed UQAC

Mousa Javidani UQAC Alexandra Maltais Rio Tinto X-Grant Chen UQAC L'effet des ajouts de Sc et de Zr sur la microstructure des dispersoïdes et les propriétés mécaniques du produit AA5083 laminé à chaud Effect of Sc and Zr additions on dispersoid microstructure and mechanical properties of hot-rolled AA5083

AXE 2 : TRANSFORMATION ET APPLICATIONS TRANSFORMATION AND APPLICATIONS

Prix Award

Ahmed Algendy UQAC

Kun Liu UQAC Paul Rometsch Rio Tinto Nick Parson Rio Tinto X-Grant Chen UQAC

Les alliages d'aluminium 5xxx sont traditionnellement considérés comme non traitables thermiquement. Avec l'ajout de Sc/Zr et du traitement thermique à plusieurs étapes, deux types de dispersoïdes (AIMn et Al₃(Sc,Zr)) ont été formés. On a étudié l'effet des additions de Sc (0,08 à 0,43 % en poids) sur la formation de dispersoïdes et les propriétés mécaniques des tôles laminées à chaud. Les résultats ont montré que les propriétés de traction augmentaient au début avec l'addition croissante de Sc. La limite d'élasticité (YS) et la résistance à la traction (UTS) de l'alliage avec 0,16% de Sc ont atteint 295 et 411 MPa, respectivement, montrant des améliorations de 28 % en YS et de 8 % en UTS par rapport à l'alliage de base. Cependant, avec une augmentation supplémentaire de Sc, les propriétés de traction ont diminué en raison de la formation d'une microstructure en forme de ligne/d'éventail associée à des précipitations discontinues d'Al₃(Sc,Zr) pendant la solidification. L'évolution des dispersoïdes Al₃(Sc,Zr) et AlMn pendant le traitement thermique et le laminage à chaud ont été caractérisés à l'aide de microscopies électroniques à balayage et à transmission. 5xxx aluminum alloys are traditionally considered non-heat-treatable. With the addition of Sc/Zr and multistep heat treatment, two kinds of dispersoids (AIMn and Al₃(Sc, Zr)) were formed. The effect of Sc additions (0.08–0.43 wt.%) on dispersoid formation and mechanical properties of hot-rolled sheets was investigated. The results showed that tensile properties initially increased with increasing Sc addition. The yield strength (VS) and ultimate tensile strength (UTS) of the alloy with 0.16 wt.% Sc reached 295 MPa and 411 MPa, respectively, showing improvements of 28% in YS and 8% in UTS compared to the base alloy. However, with a further increase of Sc, the tensile properties declined owing to the formation of a line/fan-shaped microstructure associated with discontinuous Al_3 (Sc,Zr) precipitation during solidification. The evolution of Al_3 (Sc,Zr) and AIMn dispersoids during heat treatment and hot rolling was characterized using scanning and transmission electron microscopies.

Effect of the choice of additive on biocoke and carbon anode properties

AXE 2 : TRANSFORMATION ET APPLICATIONS TRANSFORMATION AND APPLICATIONS

En vue de réduire les émissions de gaz à effet de serre, les chercheurs ont tenté de fabriquer des anodes avec du biocharbon. Mais, la majorité de ces efforts ont échoué en raison de la détérioration de la qualité des anodes avec ce remplacement. Il est connu que lors de la fabrication de biocharbon, de nombreux groupes fonctionnels riches en hétéroatomes sont éliminés. Ces groupements favorisent une meilleure interaction entre les biocharbon et le brai. Pour cela, dans cette étude, une modification chimique du biocharbon a été effectuée à l'aide de trois additifs (A(1), A(2) et A(3)) dans le but d'améliorer les interactions biocharbon-brai pour prévenir la détérioration de la qualité de l'anode. Les résultats de cette étude ont démontré que le biocharbon modifié avec A(1) et A(3) avaient des propriétés similaires à celles de l'anode standard, ce qui n'est pas le cas avec l'additif A(2).

UQAC Université du Québe à Chicoutimi

In order to reduce greenhouse gas emissions, the researchers tried to make anodes with biocoke. But the majority of these efforts failed due to the deterioration of anode quality with this replacement. It is known that during the manufacture of biocoke, many functional groups rich in heteroatoms are eliminated. These functionals groups promote better interaction between biocoke and pitch. For this, in this study, a chemical modification of the biocoke was carried out using three additives (A(1), A(2) and A(3)) in order to improve the biocoke-pitch interactions to prevent the deterioration of anode quality. The results of this study showed that the modified biocoke with A(1) and A(3) had better interaction with pitch. Anodes containing modified biocoke with A(1) and A(3) had better interaction which is not the case with additive A(2)

Effet de Sc sur le processus d'extrusion des alliages d'aluminium 1xxx pour les échangeurs de chaleur Effect of Sc on the extrusion process of 1xxx heat exchanger aluminium alloys

Le processus de fabrication industrielle d'échangeur de chaleur en alliages d'aluminium se compose de quatre étapes principales; 1) homogénéisation, 2) extrusion, 3) redressage, et 4) brasage. Le présent travail a proposé un équipement à l'échelle du laboratoire qui simulait le procédé d'extrusion industrielle des 1xxx produits des échangeurs de chaleur. Trois alliages ont été utilisés dans cette étude : l'aluminium de base pur commercial, Al-(0,07% poids) Sc, et Al-(0,07% poids Sc-0,09% poids Zr). Un traitement d'homogénéisation a été effectué à 350 °C pendant une période de 24 h. La machine d'essai thermomécanique Gleeble 3800 a été utilisée pour simuler les étapes 2, 3 et 4. Un traitement thermique de vieillissement a été effectué après le brasage simulé ciblant les phases des précipitations d'Al₃Sc/Al₃(Sc,Zr) pour évaluer son impact sur la structure du grain après le brasage. Des mesures de microdureté et de conductivé dectrique ainsi que des études de la microstructure ont été effectuées. Les résultats préliminaires ont mis en évidence la possibilité d'utiliser un ajout mineur de Sc pour empêcher la recristallisation pendant le processus de fabrication. The industrial manufacturing process of heat exchanger Al alloys consists of four main steps; 1) homogenization, 2) extrusion, 3) straightening, and 4) brazing. The present work proposed a lab scale route that simulated the industrial extrusion process of 1xxx heat exchanger products. Three alloys were used in this study; the base commercial pure aluminum, Al-(0.07wt%) Sc, and Al-(0.07wt%Sc-0.09wt%Zr). Homogenization treatment was conducted at 350 °C for a period of 24 h. Gleeble 3800 thermomechanical testing unit was used to simulate the steps 2, 3 and 4. Aging heat treatment was conducted after the simulated brazing targeting the precipitation of Al_SC/Al_s(Sc,Zr) phase to evaluate its impact on post-braze grain structure. Micro hardness and electrical conductivity measurements as well as microstructure investigation were carried out. Preliminary results highlighted the possibility of using a minor Sc addition to inhibit recrystallization during the manufacturing process.

Alyaa Bakr UQAC

Paul Rometsch Rio Tinto X.-Grant Chen UQAC Numerical modeling of the crushing response of hybrid wood-filled aluminium hollow sections for highway safety barriers

Selon le Ministère des transports du Québec, environ 20% des ponts routiers avec un tablier en béton présentent des dégradations et leur coût d'entretien a augmenté de 33,9 % entre 2018 et 2021. Afin de réduire les coûts d'entretien élevés et l'impact environnemental des ponts en béton, une solution est l'utilisation de matériaux tels que l'aluminium et le bois comme tablier de ponts ou glissières de sécurité. Les glissières hybrides seront réalisées en bois confiné dans une enveloppe en aluminium conduisant ains à une structure hybride bois/aluminium. Le bois est connu pour ses grandes capacités d'absorption de choc et l'aluminium protégera le bois contre les intempéries tout en améliorant/réduisant les modes de rupture fragile du bois. Des tests expérimentaux sont réalisés sur des assemblages hybrides aluminium/bois assemblés avec des goujons hybrides en bois confiné dans une enveloppe en aluminium afin de comparer leur résistance à celle d'un goujon en acier. Un modèlle éléments finis des assemblages hybrides est réalisé à l'aide du logiciel LS-DVNA afin de simuler et prédire le comportement mécanique de ces structures hybrides en identifiant les paramètres matériaux nécessaires au modèle numérique. According to the Ministère des Transports du Quebec, 20 % of the highway bridges mostly made of concrete show some degradations and their maintenance cost raised by 33.9 % from 2018 to 2021. Therefore, a possible novel solution to reduce costs and environmental impact would be the use of multi-materials such as wood and aluminium for bridge deck or safety barriers. The use of aluminium hollow sections envelops with filler wood material as safety barriers forms promising structural components which will prevent brittle failure of wood and protect it from direct exposure to environmental conditions. Based on experimental tests of some hybrid systems (timber-to-aluminium connections assembled using wood-filled aluminium hollow tube dowel), we investigate and evaluate a numerical procedure for the design and the analysis of new generation of hybrid safety barriers for highway bridges by using LS-DYNA to simulate the mechanical behavior of hybrid asfety barriers for highway bridges, to optimize the material parameters identification and to improve the quality of numerical simulation of hybrid structures with wood confined into aluminium protection.

Bienvenu Boli ULaval

Marc Oudjene ULaval

Daniel Coutelier INSA Hauts-de-France

Hakim Naceur Polytechnique Hauts-de-France EAU

ALUMINIUM

ÉNERGIE

RENOUVELABLE

Des sources d'énergie propre sont utilisées

procédé de réduction

conserve sa valeur.

développement de cette technologie.

0.04

Coût de l'é

pour alimenter le

ÉNERGIE PROPRE

éaction aluminum es duit de la chaleur et de l'hydrogène

RÉACTEUR ET MOTEUR

L'oxyde d'aluminium est un sous-produit solide qui est récolté et ramené au producteur pour être recyclé OXYDE D'ALUMINIUM

adults peuvent être

converties en électricité propre ou en puissance canique

Le cycle d'utilisation de l'aluminium comme carburant

RÉACTEUR ALUMINIUM-EAU

Le coût de production de l'aluminium comme carburant a été estimé grâce à

L'investissement requis pour la construction de l'aluminerie (CAPEX) et le coût

assume qu'il peut être récolté et recyclé après chaque utilisation et donc qu'il

Le coût de l'aluminium sur une base énergétique est compétitif par rapport aux

\$1,200

\$800

\$600 \$132

\$200

L'aluminium permet

renouvelable sur de grande distance de facon

d'exporter de l'énergie

plus économique que les

comme l'hydrogène, qui est explosif, et

principales alternatives

l'ammoniaque, qui est

toxique.

0.1

de l'électricité sont les deux catégories qui contribuent en majorité au coût

total de l'aluminium. Le coût de l'oxyde d'aluminium est négligé puisqu'on

alternatives comme l'hydrogène (H2) et l'ammoniaque (NH3). Le coût de l'aluminium produit à l'aide d'anodes inertes (sans émissions de CO2) est

représenté par une plage de valeur en raison de l'incertitude liée au

0.06 sté (S/kWh

4000 be (km)

0.08

une revue de la littérature scientifique et en utilisant des données publiées dans les rapports financiers de certains producteurs (RioTinto, Aloca, Hydro).

PRODUCTION D'ALUMINIUM Des cellules de réduction Hall-Héroult convertissent l'oxyde d'aluminium en métal à l'aide d'anodes inertes n'émettant pas de CO₂

Analyse technico-économique

Contexte

La société transitionne vers une utilisation grandissante d'énergie renouvelable, comme le solaire et l'éolien, qui produisent de l'électricité de manière intermittente. En raison de cette variabilité, il sera nécessaire de stocker de l'énergie de manière compacte sécuritaire, durable et peu coûteuse. Remplissant tous ces critères, l'aluminium pourrait être utilisé comme carburant propre pour exporter de l'énergie renouvelable, décarboner des industries ou des communautés éloignées, et alimenter le transport maritime

Réaction aluminium-eau

La réaction de aluminium-eau produit de l'hydrogène et de la chaleur, qui peuvent être reconvertis en électricité. En raison d'une couche d'oxide protectrice recouvrant naturellement l'aluminium, la réaction n'est pas spontanée à condition ambiante, ce qui rend le stockage sécuritaire. L'oxyde d'aluminium (Al₂O₃) produit doit être récolté et recyclé pour assurer la pérennité et la compétitivité de ce carburant métallique

Résultats expérimentaux

Il a été montré que des morceaux d'aluminium s'oxydent complètement avec de l'eau supercritique (P > 220 bar, T > 373°C). Ce proiet a pour objectif d'étudier la réaction aluminium-eau et de développer une nouvelle technologie de réacteur produisant de l'hydrogène et de la chaleur en continu, tout en permettant de récolter de l'oxyde d'aluminium recyclable.

La société transitionne actuellement vers une utilisation grandissante d'énergie renouvelable. Les énergies pauvres en carbone, telles que le solaire et l'éolien, produisent de l'électricité de manière intermittente ce qui nécessite d'en stocker une partie de manière compacte, sécuritaire, durable et peu couteuse. L'aluminium est un matériau de choix qui remplit ces critères, pouvant stocker une quantité d'énergie similaire aux carburants fossiles conventionnels tant en termes de masse que de volume. Sa réaction avec de l'eau permet la production d'hydrogène et de chaleur qui peuvent être reconvertis en électricité au besoin. En raison d'une couche d'oxyde protectrice qui recouvre naturellement l'aluminium, cette réaction n'est pas spontanée à condition ambiante, ce qui rend le stockage sécuritaire. Toutefois, il a été démontré que des morceaux d'aluminium allant jusqu'à 3 mm s'oxydent complètement lorsqu'en contact avec de l'eau supercritique. Ainsi, le présent projet de recherche consiste à développer une nouvelle technologie de réacteur permettant la réaction complète de l'aluminium avec de l'eau à haute pression et haute température. L'oxyde d'aluminium produit par la réaction doit être récolté et recyclé sans émissions de CO₂ pour assurer une utilisation circulaire de l'aluminium et assurer sa durabilité et sa compétitive par rapport à d'autres vecteurs d'énergie propre.

Society is currently transitioning to a low-carbon era which translates in a wide use of renewable energy sources. These energy sources, such as solar and wind, generate electricity intermittently therefore triggering the need for compact, safe, sustainable, and cheap storage. Aluminum meets all these criteria and can store a similar amount of energy as conventional fossil fuels, both in terms of mass and volume. Hydrogen and heat are released when aluminum is reacted with water and can both be converted back to electricity if needed. A thin oxide layer naturally protects aluminum from further oxidation at ambient conditions, allowing for safe storage and transportation of this energy carrier. However, experiments have demonstrated that pieces of aluminum up to 3 mm in size can be completely oxidized when in contact with supercritical water. Therefore, this research project aims at developing a new reactor technology enabling the complete reaction of aluminum using water at high pressure and high temperature. The reaction also produces aluminum oxide, which needs to be collected and recycled in a carbon-free way to allow for the circular use of aluminum and to ensure its sustainability and competitiveness over other clean energy carriers.

Award

Pascal Boudreau McGill

Jocelyn Blanchet McGill Jeffrev Berathorson McGill

+ELYSIS

Prix

Développement d'alliages entropiques légers Al-Cu-Zn-Mg avec haute résistance mécanique à température élevée

Development of lightweight Al-Cu-Zn-Mg entropic alloys with high strength at elevated temperature

2. A positive correlation is found between the yield strength and the content of intermetallics.

3. All five experimental as-cast alloys exhibited a good YS of more than 100 MPa at 300°C, especially, Alloy-5 hit the highest YS of 212 MPa.

4. The precipitate transformation in fcc-Al decreased the strength of the thermally exposed alloys. Alloy-5 showed the best thermal stability.

Les applications industrielles des alliages d'aluminium sont fortement limitées par leur comportement mécanique détérioré à des températures élevées. Récemment, les alliages à haute entropie ont attiré une attention considérable pour leurs excellentes performances mécaniques à température élevée vu leur entropie élevée qui aide à induire une forte distorsion du réseau. Dans ce travail, en introduisant le concept d'entropie élevée dans les alliages d'aluminium, une série d'alliages entropiques Al-Cu-Zn-Mg sont conçus et étudiés. Les alliages ont de faibles densités variant dans [2,95-3,63 g/cm3] et une caractéristique multi-phase. Une corrélation positive est trouvée entre la limite d'élasticité (YS) et la teneur des intermétalliques. Parmi les alliages étudiés, le Al77Cu17Zn3Mg2Cr1 présentait la résistance mécanique la plus élevée à l'état brut de coulée, présentant un (YS) élevé de 588 et 212 MPa à 20°C et 300°C, respectivement. Des précipités sont apparus dans les alliages bruts de coulée en raison de la diffusion lente dans les alliages entropiques. La transformation des précipités dans la phase AI-CFC durant l'exposition thermique à 300°C a diminué la résistance mécanique dans les cinq premières heures. Le (YS) de 199 MPa à 300°C de (Al77Cu17Zn3Mg2Cr1) après 100h à 300°C indique son potentiel pour des applications à haute température.

The applications of aluminum alloys in various industrial sectors are greatly limited by their deteriorated mechanical behavior at high temperatures. Recently, high entropy alloys (HEAs) have attracted tremendous attention in various fields for their outstanding mechanical performance at elevated temperature due to their high entropy value, which can help to induce strong lattice distortion. In this work, by introducing the concept of high entropy into the aluminum alloys, a series of AI-Cu-Zn-Mg entropic alloys were designed and studied. The alloys had a low density varying from 2.95 g/cm3 to 3.63 g/cm3 and a multiphase feature. A positive correlation was found between the yield strength (YS) and the content of intermetallics. Among all five alloys studied the alloy Al77Cu17Zn3Mg2Cr1 exhibited the highest mechanical strength at as-cast condition, showing a high YS of 588 MPa and 212 MPa at 20 °C and 300 °C, respectively. Precipitates appeared in the as-cast alloys due to the sluggish diffusion effect in the entropic alloys. The transformation of precipitates occurred in the fcc-Al phase during thermal exposure at 300 °C, which decreased the strength in the first five hours. The YS of 199 MPa at 300 °C of alloy Al77Cu17Zn3Mg2Cr1 after thermal exposure at 300 °C/100h indicated its potential for high-temperature applications.

Liying Cui UQAC

Zhan Zhang UQAC

X-Grant Chen

UQAC

Évaluation numérique et expérimentale du comportement thermique de murs rideaux intelligents avec un cadre en aluminium Numerical experimental evaluation of the thermal performance of aluminum frame coupled with smart windows

www.kawneer.con =insulated-curtai pec Download.

https://www.kawneer.com/kawneer/north_america/en/cad_spec.asp?prod_id=4 271&area=prod (Accessed 30 September 2022)

31 CAD & S

Olivia Carolina da Rosa ULaval

Louis Gosselin ULaval

La construction et l'opération des bâtiments consomment plus de 30 % du total mondial de l'énergie et considérant que l'enveloppe du bâtiment est le responsable des plus gros transferts de chaleur dans les bâtiments, les systèmes mieux isolés thermiquement et capables d'atténuer la consommation d'énergie sont souhaités. Malgré sa conductivité thermique élevée, l'aluminium est largement utilisé dans le secteur du bâtiment. Considérant les codes de construction plus sévères, il est important d'améliorer la performance des systèmes en aluminium afin que ce matériau continue à être utilisé. La présente étude vise à explorer les châssis en aluminium couplé à des fenêtres intelligentes pour mieux gérer les transferts de chaleur. Les vitrages intelligents peuvent changer leurs propriétés optiques par un stimulus externe; dans le cas des vitrages électrochromes, par une tension appliquée. Un modèle 2-D est en cours d'élaboration avec ANSYS Fluent pour étudier et optimiser le transfert de chaleur à travers le cadre de la fenêtre. De plus, le couplage entre le cadre et le vitrage electrochrome sera étudié par un montage expérimental dans un bâtiment-test dont l'objectif est d'évaluer l'influence sur le profil de température du bâtiment d'un cadre en aluminium permettant d'accueillir le câblage nécessaire à la fenêtre intelligente.

pour accueillir le câblage requis pour la

fenêtre intelligente.

Building construction and operation requires more than 30% of the global total final energy. Considering that the building envelope is responsible for most heat losses and gains in buildings, systems with better thermal insulation and able to mitigate the energy consumption are desired. Despite its high thermal conductivity, aluminum is used abundantly in the building sector. With construction codes getting more stringent, it is important to improve the performance of building systems that include aluminum if one wants this material to continue being used. This works aims to explore aluminum frames coupled with smart glazing to better manage heat transfer through the envelope. A smart glazing can change its optical properties (from bleached to a colored state) by external stimulus; in the case of electrochromic windows, adopted here, an applied voltage controls the states. A 2-D model in ANSYS Fluent has been implemented to investigate the heat transfer through conduction and convection through the window frame. Furthermore, the coupling between the window frame and the electrochromic window will be investigated by experiments within a test building, whose aim is evaluating the influence on the building temperature profile of an aluminum frame designed to accommodate the wiring required for the smart window.

Étude expérimentale concernant la stabilité locale des sections complexes et des sections creuses rectangulaires en aluminium

Experimental investigation of the local stability of complex and hollow rectangular aluminium sections

Plusieurs avantages tels que le rapport résistance/poids élevé, la résistance à la corrosion et la recyclabilité font des alliages d'aluminium un excellent candidat pour les constructions durables. Cependant, les éléments en aluminium ne sont pas largement utilisés dans la structure, ce qui est principalement dû au manque de connaissances sur son comportement mécanique. Cette étude vise à mieux comprendre le comportement des sections en aluminium via des études expérimentales. En conséquence, une étude expérimentale complète a été réalisée pour analyser le comportement de flambage des sections en aluminium extrudé sous compression avec différentes géométries. En particulier, 10 tests de colonnes et 18 tests de sections transversales sous compression axiale et excentrique ont été effectués pour étudier te comportement de flambage local des sections en aluminium. De plus, 10 essais de traction ont été réalisés afin d'obtenir les propriétés des matériaux nécessaires au développement de modèles numériques précis. Les imperfections géométriques initiales ont été mesurées mécaniquement ainsi qu'à l'aide de scanneurs 3D. Le développement des motèles numériques per mettront de développer une nouvelle approche pour la prédiction de la résistance au flambage des sections en aluminium, au moyen du «Overall Interaction Concept». Many advantages such as the high strength-to-weight ratio, corrosion resistance and recyclability make aluminum alloys an excellent candidate for sustainable constructions. However, aluminium elements are not widely used in the structural engineering community, which is mainly due to the lack of knowledge towards its mechanical behavior. This study aims at providing such pivotal knowledge necessary to better understand the behaviour of aluminium sections through experimental investigations. Accordingly, a comprehensive experimental study was performed to analyze the buckling behavior of extruded aluminium sections under compression with different geometric variations (rectangular, square, and complex shapes). In specific, 10 stub column tests and 18 cross-section tests under axial and eccentric compression were carried out to investigate the local buckling behaviour of the aluminium sections. Additionally, 10 tensile coupon tests were performed to obtain the material properties that are necessary for developing accurate numerical models for the test specimens. The initial geometrical imperfections were measured mechanically as well as using 3D scanners. Development of the numerical models is under way, which will be validated through the measurements from the experimental study. Finally, the experimental and numerical results will enable developing a novel design approach for the prediction of buckling resistance of aluminum sections, by means the "Overall Interaction Concept".

Prix Award The Alumine Industry Forum

Sahar Dahboul ULaval

Liya Li ULaval Prachi Verma ULaval Nicolas Boissonnade ULaval Pampa Dey, Mario Fafard ULaval Degré de sophistication requis pour la modélisation dynamique d'un pont hybride acier-aluminium avec tablier orthotrope en aluminium extrudé Degree of sophistication required for the dynamic modeling of a steel-aluminium hybrid bridge with extruded aluminium deck

05

1.

2.

3.

Cette étude a permis de conclure que :

Modèle idéalisé poutres-coques

III. Modèle 3D ABAOUS

Dans ce modèle, tous les éléments utilisés sont des éléments coques. Ce modèle représente la référence c'est-à-dire la structure dans sa plus fidèle représentation et les résultats des modèles simplifiés sont comparés à ceux de ce modèle

Les modèles de grillage sont plus précis dans la prédiction de la fréquence de flexion que le modèle idéalisé poutres-coques. Parmi les modèles de grillage, celui avec le maillage le plus serré donne les meilleurs résultats.

Conclusions

- Le modèle idéalisé poutres-coques prédit mieux la première fréquence de torsion que les modèles de arillage.
- Tous les modèles simplifiés donnent des valeurs de fréquence de vibration inférieures aux fréquences obtenues à partir du modèle Abagus, ce qui est sécuritaire pour l'évaluation des forces dynamiqu 4. Le critère MAC a confirmé que les modèles simplifiés (grillage et coque idéalisée) pouvaient prédire les

formes de mode de flexion et de torsion avec précision

L'affiche porte sur l'évaluation des caractéristiques dynamiques d'un nouveau type de pont. Le type de pont en question se distingue par l'utilisation d'un tablier de pont fabriqué entièrement en aluminium. Un tel pont a récemment été conçu par la firme WSP sur commande du ministère des Transports du Québec et de l'Université Laval. Une problématique importante liée à ce nouveau type de construction est de bien anticiper le comportement de celui-ci sous charges dynamiques. Ceci est dû, entre autres, au fait que le tablier est de type orthotrope avec une géométrie complexe, et que sa connexion avec les poutres du pont est particulière (il s'agit d'un système de brides limitant certains degrés de liberté). L'objectif principal du projet présenté ici est de définir le niveau de modélisation requis pour adéquatement modéliser les caractéristiques dynamiques de ce type d'ouvrage (fréquences propres et modes de vibrations). Pour ce faire, les plans du pont précédemment décrit seront utilisés pour créer plusieurs modèles par éléments finis qui présenteront divers niveaux de sophistication (P.ex. modélisation par la méthode de grillage, modélisation mixte poutres-coques couplées, et découplées). Comme aucune donnée expérimentale n'est disponible à l'heure actuelle, les résultats des analyses modales issues de ces modèles seront comparés avec les résultats issus de modèles volumiques plus sophistiqués. Il est prévu que les résultats issus des modèles seront confrontés aux résultats expérimentaux lorsque le pont sera en service

The poster focuses on the evaluation of the dynamic characteristics of a new type of bridge featuring a deck made entirely of aluminium, recently designed by the firm WSP on behalf of the ministère des Transports du Québec and Université Laval. An important issue related to this new type of construction is to anticipate and predict the behavior of the bridge under dynamic loads. This is due, among other things, to the fact that the deck is orthotropic with a complex geometry and that its connection with the bridge girders is done with a system of flanges limiting certain degrees of freedom. The main objective of this project is to define the level of modeling required to adequately represent the dynamic characteristics of this type of structure (natural frequencies and vibration modes). To do so, the previously described bridge drawings will be used to create several finite element models with various levels of sophistication (e.g. grid modeling, coupled and decoupled beam-shell modeling). As no experimental data is available at this time, the results of modal analyses from these models will be compared with the results from more sophisticated volume models. It is expected that the results from the models will be compared with the experimental results once the bridge is in service.

Papa Mamadou Diop UdeS

E. Baarchi

UdeS **Charles-Philippe Lamarche** UdeS **Benoit Cusson** WSP

40

Le comportement de précipitation des dispersoïdes contenant de Zr dans les alliages Al-Mg-Si-Zr pendant différents traitements thermiques a été étudié par microscopie électronique à transmission. De plus, le comportement de transformation de métastable L_{12} -Al₂Zr à l'équilibre DO₂₂-Al₂Zr a été diudié à travers un traitement en deux étapes. Les résultats ont montré que L12 précipitait préférentiellement le long des directions $<001 > \alpha$ -Al aux premiers stades de la nucléation, coïncidant avec le même site et la même orientation que β' -Mg₂Si. Les zones enrichies en Si après la dissolution de β' -Mg₂Si pourraient agir comme des sites hétérogènes pour les dispersoïdes L1₂-Al₃Zr. Cependant, en raison de la sursaturation élevée en Zr dans la zone dendritique, une densité numérique élevée de dispersoïdes L1₂ nucléés de manière homogène a précipité en transformant les dispersoïdes L1₂ à des températures élevées (supérieures à 500°C). La présence de parois d'antiphase (APB) au milieu des dispersoïdes L1₂ a été observée aux premiers stades de la transformation le leng des directions <001 > wers la structure finale DO₂₂.

The precipitation behaviour of Zr-bearing dispersoids in Al-Mg-Si-Zr alloys during different heat treatments was studied by transmission electron microscopy. Also, the transformation behaviour of metastable L1₂ to the equilibrium D0₂₂ was studied by means of a two-step treatment. The results showed that L1₂ precipitated preferentially along <001> α -Al directions at the early stages of nucleation, coinciding with the same sites and orientation of β '-Mg₂Si could act as heterogeneous sites for L1₂-Al₂Zr dispersoids. However, due to the high level of Zr supersaturation in the dendritic zone, a high number density of homogeneously nucleated L1₂ dispersoids precipitates while prolonging the holding time. On the other hand, the precipitation of D0₂₂ dispersoids coursed by transforming L1₂ dispersoids at bigher temperatures (above 500). The presence of antiphase boundary APB in the middle of the L1₂ dispersoids was observed at the early stages of transformation, which preferentially grew along <001> directions to the final D0₂₂ structure.

Ali Elasheri UQAC

Eman Elgallad UQAC Nick Parson Rio Tinto X-Grant Chen UQAC

1. INTRODUCTION

Problem statement:

- The growing maintenance costs of existing infrastructure has demanded alternative ways for material selection such as the life cycle cost analysis.
- Despite having lower maintenance cost, the application of aluminium has been limited in civil infrastructure due to its higher initial cost.
- Life cycle cost analysis on an existing aluminium structure can highlight the benefits of aluminium as an alternate construction materials.

Objectives:

Perform an in-depth life-cycle cost analysis (LCCA) on the first all-aluminium bridge in Arvida, Canada following ISO 156856 [1]

3. LIFE-CYCLE COST ANALYSIS

- Life-span: 100 years (1950-2050) Initial cost of construction and Maintenance cost of 70+ years are based on the database of MTQ
- The current nominal cost has been estimated based on the historic rates of Bank of Canada [3].
- Assumed discount rate for future cost estimation: 3%
- Traffic disturbance costs are estimated considering time lost cost, fuel cost, and vehicle maintenance cost.
- Projected costs for future maintenance work are based on bridge inspections.

Demolition cost is estimated at end of life.

2. BRIDGE DESCRIPTION Aluminium Alloy: Alcan 26S

- Total length of the deck-arch type bridge: 152 m Span arch ribs: 90 m
- with Fv=395 MPa Riveted built-up sections. Thickness of concrete deck: 200 mm • Floor beams at every 3 meters

4. SENSITIVITY ANALYSIS

Uncertain factors or assumed parameters that can influence the results of the LCCA:

- Future discount rate
- Duration of road closure due to maintenance work (n)
- Year-to-vear variation of annual average daily traffic (AADT)
- Estimation of projected maintenance and demolition costs (x)

A sensitivity study is performed to evaluate their influence on the total cost of acauisition :

Discount rates	Discount rate variations	Total Cost percentage variations	Road closure duration	Closure duration variations	Total Cost percentage variations
2%	-1%	0.77%	n +10%	+10%	-2.07%
3%	0%	0.00%	n	-	0.00%
4%	+1%	-0.31%	n -10%	-10%	2.07%
Future work estimated	Future cost	Total Cost percentage	AADT increase	AADT increase rate	Total Cost percentage
costs	· anations	variations	rates	variations	variations
x +10%	+10%	variations 0.82%	 rates 0%	variations -1%	variations -1.32%
x +10%	+10%	variations 0.82% 0.00%	 rates 0% 1%	variations -1% 0%	variations -1.32% 0.00%
x +10% x +10% x -10%	+10%10%	variations 0.82% 0.00% -0.81%	rates 0% 1% 2%	variations -1% 0% +1%	variations -1.32% 0.00% 1.83%

Although traffic disturbance cost due to road closure has the most influence on the total cost, in general, the results of the LCAA are negligibly sensitive towards the assumptions undertaken in this study.

5. Conclusions and future work

- of the concrete deck dominates the total cost.
- LCAA will be performed with aluminum deck for better insight.
- Traffic disturbance costs need to be estimated more precisely as the
- results of LCAA is sensitive towards its assumption. The LCAA results will be compared with similar bridges with traditional
- materials such as steel, concrete and timber.

REFERENCES

 "ISO 15686-5:2017 Buildings and constructed assets — Service life planning — Part 5: Life-cycle costing. 2017. International Organization for Standardization.
 The First Aluminum Highways Bridge in the World, The Aluminum Company of Canada, Ltd.
 BiGouvernement du Canada, S. C. 2007. "Indice des prix à la consommation selon le groupe de produits, données mensuelles, variation en pourcentage." Accessed June 21, 2022. https://www150.statcan.gc.ca/t1/tbl1/fr/tv.action?pid=1810000413.

Thomas Fortin ULaval

Pampa Dey

ULaval Nicolas Boissonnade ULaval

Mario Fafard ULaval

Traditionnellement, le coût initial des matériaux est le facteur déterminant pour la sélection des matériaux pour la construction structurelle. Au cours des dernières années, les coûts de maintenance croissants des infrastructures existantes ont exigé d'autres moyens de sélection des matériaux. Plutôt que le coût initial, l'industrie de la construction adopte désormais des approches plus holistiques compte tenu des implications financières et environnementales à long terme de leurs projets. Ainsi, des matériaux tels que l'aluminium, dont les coûts initiaux sont plus élevés, gagnent en popularité. Compte tenu de la multitude d'attributs positifs de l'aluminium tels que la légèreté, la durabilité, l'excellente recyclabilité et la résistance à la corrosion, il peut réduire le coût du cycle de vie des structures sur toute la durée de vie. Cependant, la littérature actuelle manque de preuves d'une analyse complète du coût du cycle de vie des structures en aluminium existantes. Sur la base de cette prémisse, cette étude effectue une analyse du coût du cycle de vie du premier pont entièrement en aluminium à Arvida, au Québec. L'analyse tient compte du coût de construction, du coût d'entretien des 70 dernières années ainsi que des coûts prévisionnels des travaux d'entretien futurs, de la perturbation de la circulation associée et de la démolition du pont en fin de vie. Enfin, une étude comparative entre des ponts de différents matériaux est entreprise pour mieux comprendre la durabilité de l'aluminium par rapport aux autres matériaux traditionnels.

Traditionally, initial material cost is the governing factor for material selection for structural construction. In recent years, the growing maintenance cost of existing infrastructure has demanded alternative ways for material selection. Rather the initial cost, the construction industry is now adopting more holistic approaches considering the long-term financial and environmental implications of their projects. Thus, materials such as aluminium with higher initial costs, are gaining recognition. Given the multitude of positive attributes of aluminium such as lightweight, durability, excellent recyclability and corrosion resistance, it can reduce the life cycle cost of structures over the entire service life. However, the current literature is lacking evidence of a comprehensive life cycle cost analysis on existing aluminium structures. Based on this premise, this study performs a life cycle cost analysis on the first all-aluminium bridge in Arvida, Quebec. The analysis takes into account the construction cost, the maintenance cost from the past 70 years as well as the projected costs for future maintenance work, associated traffic disturbance and the demolition of the bridge at the end of life. Finally, a comparison study between bridges of different materials is undertaken to better understand the sustainability of aluminium compared to other traditional materials.

Réaction des alliages AuraITM au traitement d'homogénéisation Effects of homogenisation treatment on AuraITM alloys

Les alliages de fonderie AuralTM, de type Al-Si-Mg-Mn, sont susceptibles aux mécanismes de durcissement structural lors des traitements thermiques. Plus spécifiquement, le manganèse semble influencer la microstructure obtenue lors de la précipitation en solution solide. Dans cette étude, le traitement d'homogénéisation des alliages AuralTM est étudié. D'abord, des simulations thermodynamiques, effectuées avec Thermo-Calc et MatCalc, permettent d'établir le comportement de solidification des alliages AuralTM est étudié. D'abord, des simulations thermodynamiques, effectuées avec Thermo-Calc et MatCalc, permettent d'établir le comportement de solidification des alliages AuralTM e. 2, 3 et 5 respectivement, en suivant les modèles de Scheil-Gulliver. Ces mêmes simulations prédisent la dissolution progressive de la phase β -Mg₂Si, combinée à une augmentation de la concentration en manganèse dans la matrice. Les observations en laboratoire corroborent les simulations, alors qu'une fragmentation généralisée de la phase α -Al(Mn, Fe)Si est observée lors du traitement d'homogénéisation. La matrice d'Al s'enrichit également de manganèse, tel que confirmé par des études chimiques. Ces résultas permettent de supposer la nucléation de dispersoïdes à base de manganèse dans la matrice, se formant durant le traitement thermique. Leur observation directe doit être confirmé dans des études subséquentes.

AuralTM alloys are foundry alloys of the Al-Si-Mg-Mn type that are susceptible to structural hardening mechanisms during heat treatment. More specifically, manganese seems to influence the microstructure obtained during solid-solution precipitation. In this study, the homogenization treatment of AuralTM alloys is studied. First, thermodynamic simulations, performed with Thermo-Calc and MatCalc, allow to establish the solid-fication behavior of AuralTM-2, 3 and 5 alloys respectively, following Scheil-Gulliver models. These same simulations predict the progressive dissolution of the β -Mg₂Si phase, combined with an increase in manganese concentration inside the aluminium matrix. Experimental observations corroborate the simulations, as a generalized fragmentation of the α -Al(Mn,Fe)Si phase is observed during homogenization treatment. The Al matrix also becomes enriched with manganese-based dispersoids in the matrix occurs during heat treatment. Their direct observation must be confirmed in subsequent studies.

L'évolution microstructurale et les mécanismes d'adoucissement dynamique de l'alliage Al-Mg-Si-Zr-Mn lors de la déformation par compression à chaud Microstructural Evolution and Dynamic Softening Mechanisms of Al-Mg-Si-Zr-Mn Alloy during Hot Compressive Deformation

Abhishek Ghosh UQAC

Ali Elasheri UQAC X-Grant Chen UQAC

Les comportements à la déformation à chaud de l'alliage Al-Mg-Si-Zr-Mn ont été étudiés en effectuant des essais de compression uniaxiale dans un intervalle de température de 400 à 550°C et à une vitesse de déformation de 0,001 à 1 s⁻¹. Une cartographie du taux de déclin a été introduite et divisée en quatre domaines différents (I-IV) pour comprendre la corrélation entre la contrainte d'écoulement avec diverses microstructures et les mécanismes d'adoucissement dynamiques. La cartographie du taux de déclin a clairement révélé la prédominance d'un écrouissage plus élevé lorsque la déformation effectuée était dans (400-450°C) avec 1 s-1. D'autre part, la restauration dynamique (DRV) était le mécanisme principal d'adou-cissement lorsque la déformation était effectuée dans l'intervalle de température [400-450°C] avec une vitesse de déformation de 0,1 à 0,001 s⁻¹, ainsi que dans [500-550°C] avec une vitesse de déformation de 0,001 à 1 s⁻¹. De plus, une recristallisation dynamique partielle (DRX) a également été observée lorsque la déformation de 0,001 à 0, 1 s⁻¹. Les résultats de texture ont démontré la présence de fortes textures Goss (011)<10> et de cube tourné (001)<110> dans les quatre domaines.

The hot deformation behaviors of Al-Mg-Si-Zr-Mn alloy were explored by performing uniaxial compression tests in a temperature range of 400 to 550°C and a strain rate ranging from 0.001 to 1 s⁻¹. A decline ratio map was introduced and divided into four different domains (I-IV) to understand the correlation between the flow stress with various microstructures and the dynamic softening mechanisms. The decline ratio map clearly revealed the dominance of higher work hardening when the deformation was carried out at 400-450°C with 1 s⁻¹. On the other hand, dynamic recovery (DRV) was the main softening mechanism when the deformation was conducted at a temperature range of 400-450°C with a strain rate of 0.1 to 0.001 s⁻¹ and at a temperature of 500-550°C with a strain rate of 0.001 to 1 s⁻¹. In addition, partial dynamic recrystallization (DRX) was also observed when the deformation occurred at a temperature of 450-550°C with a strain rate of 0.001 to 0.1 s⁻¹. Texture results demonstrated the presence of strong Goss (011)<100> and rotated cube (001)<110> textures in all four domains.

L'effet d'empoisonnement par le Cr sur l'affinage des grains dans les alliages d'aluminium corroyés 6111

Cr poisoning effect on grain refinement in 6111 aluminum wrought alloys

L'affinage des grains est un facteur clé pour améliorer les propriétés des alliages d'aluminium corroyés. L'efficacité d'affinage dépend des paramètres de coulée et des éléments d'alliage. Le but de ce travail est d'étudier l'effet de Cr sur l'efficacité d'affinage des trois raffineurs de grains industriels. Les mesures de la taille des grains ont révélé qu'une forte teneur en Cr a un effet d'empoisonnement, résultant en une structure de grains plus grossiers. Les résultats SEM-EDS ont révélé que le Cr peut diffuser dans la couche superficielle de différentes particules intermétalliques (Al₃Ti, TiB₂ et TiC) contenues dans les raffineurs de grains, préférentiellement au niveau des particules Al₃Ti. La diffusion de Cr a augmenté avec le temps de contact de 2 min à 2 heures. De plus, le modèle d'appariement bord à bord (E2EM) a été appliqué pour examiner l'appariement cristallographique avant et après la diffusion de Cr. Les résultats ont montré que la diffusion de Cr affaiblissait la relation requise entre la matrice d'Al et l'affineur de grain en rendant les intermétalliques moins puissants à cause de la diminution de la cohérence cristallographique à l'interface. The grain refinement practice is an important key factor to improve the aluminum wrought alloys properties. The refinement potency is known to depend on the casting parameters and the alloying elements. The aim of this work is to investigate the effect of Cr element on the refinement efficiency of three industrial grain refiners. Grain size measurements revealed that a high Cr addition had a poisoning effect, resulting in a coarser grain structure. SEM-EDS results revealed that the Cr could diffuse into the surface layer of different intermetallic particles (Al₃TI,TB₂ and TiC) contained in the grain refiners, preferentially into the Al₃TI particle surface layer. The Cr diffusion increased with increasing the contact time from 2 min to 2 hours. In addition, the edge-to-edge matching model (E2EM) has been applied to examine the crystallographic matching between Al matrix and intermetallic particles before and after Cr diffusion. Results showed that Cr diffusion weakened the worse crystallographic matching in the interface.

Amélioration de la résistance à la fatigue oligocyclique à température élevée de l'alliage de fonderie Al-Cu par microalliage avec Mg Enhanced low-cycle fatigue resistance at elevated temperature of Al-Cu cast alloy by microalloying with Mg

41 44 41

Les alliages de fonderie Al-Cu sont largement utilisés comme composants de moteurs à combustion comme les culasses. Cependant, ces matériaux structuraux sont susceptibles à la rupture sous l'effet d'un chargement de fatigue oligocyclique (LCF) à des températures élevées. Leur résistance en (LCF) doit être améliorée pour subir un temps de service plus long. Dans le présent travail, le comportement en (LCF) à haute température des alliages AI-Cu 224 traités au T7 et micro-alliés de Mg (0 à 0,24% en poids) a été étudié. Pendant le (LCF), tous les alliages expérimentaux présentent un adoucissement cyclique à 300°C. Les alliages contenant du Mg présentaient une résistance LCF plus élevée, ce qui peut être attribué aux ajouts de Mg qui favorisaient la précipitation de θ' dans les alliages 224 et augmentaient la résistance thermique de θ'. L'alliage à 0,24% Mg a montré le meilleur comportement LCF. La morphologie de la fracture a révélé que les fissures s'amorcent généralement à partir des porosités près de la surface. De plus, les phases intermétalliques fragiles peuvent également contribuer à l'amorçage des fissures. De plus, la durée de vie (LCF) des alliages 224 peut être prédite avec précision par un modèle d'énergie d'hystérésis.

Fig. 3 Half-life hysteresis loops of (a) 0Mg, (b) 0.12Mg and (c) 0.24Mg.

observed in 0.24Mg alloy.

AI-Cu cast alloys have been widely used as combustion engine components such as cylinder heads, however, these structural materials are prone to failure by low cycle fatigue (LCF) loading at high temperatures. Their LCF resistance needs to be improved to achieve a longer service time. In the present work, the high-temperature LCF behavior of T7-treated AI-Cu 224 cast alloys microalloying with Mg (0 to 0.24 wt.%) was studied. During LCF, all the experimental alloys exhibit cyclic softening at 300 °C. The Mg-containing alloys displayed a higher LCF resistance, which can be attributed to the fact that Mg additions promoted the precipitation of θ' in 224 alloys and increased the thermal resistance of θ' . The alloy with 0.24% Mg showed the best LCF behavior. The fracture morphology revealed that the cracks usually initiate from the porosities near the surface. In addition, the brittle intermetallic phases can also play a role in crack initiation. In addition, the LCF life of 224 alloys can be accurately predicted by a hysteresis energy model.

Kun Liu UQAC Lei Pan Rio Tinto **X-Grant Chen** UQAC

Modélisation thermomécanique-microstructurale couplée appliquée aux alliages d'aluminium

Coupled Thermomechanical-Microstructural Modelling Applied to Aluminum Alloys

Une approche multidisciplinaire est présentée pour étudier le durcissement par précipitation de l'alliage Al-Cu. L'évolution de la microstructure de différents précipités est analysée sur la base de la théorie de la nucléation et croissance à l'état solide, en soulignant le rôle des paramètres cinétiques. À cet égard, les voies cinétiques envisagent d'évaluer le rôle de la mobilité interfaciale sur l'évolution de différents types de phases secondaires (9 », 9 et 0) dans le régime en mode mixte. Ce modèle suppose que la mobilité interfaciale de chaque phase gère la vitesse de croissance et de dissolution de ce précipité durant le vieillissement. Le durcissement structural repose sur les paramètres géométriques de ces phases tout au long de l'évolution du vieillissement, en particulier leur taille, leur forme et leur fraction volumique. La taille et la fraction volumique de divers précipités sont calculées avec le modèle en mode mixte préservant la forme à partir de l'étape de nucléation jusqu'à l'équilibre. Les paramètres de ces phases secondaires ont été utilisés pour évaluer la contrainte de cisaillement critique et leur contribution au durcissement total en fonction des mécanismes de cisaillement et d'Orowan. A multidisciplinary approach is presented to investigate the precipitation hardening of Al-Cu alloy. The microstructure evolution of different precipitates is analyzed based on the complementary theory of solid-state nucleation and growth, highlighting the role of kinetic parameters. In this regard, kinetic pathways consider assessing the role of interfacial mobility on the evolution of different types of secondary phases (8", 6', and 9) in the mixed-mode regime. This model indicates that each phase's interfacial mobility manages the growth and dissolution velocity of that precipitate in the aging temperature. The overall precipitation strengthening relies on the geometrical parameters of these phases through the aging evolution, specifically their size, shape, and volume fraction at any given time. The size and volume fraction of various precipitates are computed with the shape-preserving mixed-mode model from the earlier nucleation stage through time and considering aging temperature. The secondary phases parameters were used to evaluate the critical resolved shear stress and their contribution to the total precipitation strengthening based on the shearing and Orowan looping mechanisms. Développement d'une nouvelle génération de câbles conducteurs en aluminium Development of New Generation of Aluminum Conductor Cables

La faisabilité de production d'une nouvelle génération de câbles conducteurs AI est étudiée pour aller au-delà de la résistance et de la conductivité électrique (CE) des conducteurs classiques. Les alliages hypoeutectiques à base d'AI-Si sont l'un des candidats prometteurs pour être considérés comme de nouveaux câbles conducteurs d'AI; cependant, leur CE inférieure a restreint leurs applications industrielles. Par conséquent, les tiges AA4043, avec ajout de Sr, ont été produites par le procédé Properzi. Les tiges produites de 9,5 mm de diamètre ont ensuite été étirées à froid sur des fils de 2 mm de diamètre. La microstructure et les propriétés des alliages AA4043 prédessinés ont été caractérisées par des microscopies optiques, la diffraction de rétrodiffusion électronique, la microdureté et la mesure CE. Les résultats préliminaires montrent que le traitement de prérecuit affecte significativement la CE des tiges produites et est un facteur critique pour mener avec succès le processus d'étirage à froid. En outre, pour la plupart des échantillons pré-recuit, la CE a été améliorée de 48 % à 58 % IACS, mais la microdureté a été considérablement réduite; cependant, en appliquant le tréflage à froid, la dureté et la CE ont été augmentées dans toutes les conditions. De plus, la meilleure combinaison de dureté (62HV) et de CE (59,4 % IACS) pour les échantillons prélevés à froid a été obtenue en appliquant le pré-recuits à 250 °C pendant 4 heures. The production feasibility of a new generation of AI conductor cables is explored to go beyond conventional conductors' strength and electrical conductivity (EC). Hypoeutectic AI-SI-based alloys are one of the promising candidates as novel AI conductor cables; however, their lower EC has restricted their industrial applications. Therefore, AA4043 rods with Sr-addition were produced by the Properi process. The rods with 9.5 mm diameter were subsequently cold drawn to wires with 2 mm diameter. The microstructure and properties of the pre-annealed drawn AA4043 alloys were characterized by optical microscopy, electron backscatter diffraction, microhardness and EC measurements. Preliminary results show that the pre-annealing treatment significantly affects the EC of the produced rods and is a critical factor in successfully conducting the cold drawing. Moreover, for most pre-annealed samples, EC was improved from 48% to 58% IACS, but microhardness was considerably reduced; however, by applying the cold wire drawing, both hardness and EC were increased in all conditions. The best combination of hardness (62 HV) and EC (59.4% IACS) for the cold-drawn samples was achieved by applying the pre-annealing at 250°C for 4 hours.

Mohammad Khoshghadam-Pireyousefan UQAC

Mousa Javidani UQAC Alexandre Maltais Rio Tinto X.Grant Chen UQAC Étude du soudage par friction malaxage avec outil à double-épaulement de l'aluminium

Study of Friction Stir Welding with Bobbin-Tool of Aluminum

Le soudage par friction malaxage avec outil à double épaulement (BT-FSW) est une variante du procédé de soudage par friction malaxage conventionnel (FSW) avec une géométrie d'outil particulière comprenant un épaulement supplémentaire prenant appui sur la surface inférieure des pièces à assembler. Cela permet un apport de chaleur supplémentaire, un flux de chaleur plus homogène dans l'épaisseur de soudure et une pénétration complète du pion. Il s'adapte également mieux à des géométries d'assemblages particulières. Il s'agit d'un procédé récent considéré comme une « technologie verte » pour son efficacité énergétique, mais qui comprend de nombreux paramètres et dont la compréhension de l'impact de ces derniers et des phénomènes physiques en cours de soudage reste à développer pour optimiser la qualité de la soudure et promouvoir le procédé. Les soudures par BT-FSW ont en effet une microstructure particulière qui rend leur optimisation difficile. Des essais seront réalisés avec différents paramètres, de manière à caractériser les soudures d'aluminium en fonction par différentes techniques d'analyse. L'objectif est de prédire les propriétés de la soudure t d'établir des modèles prédictifs dont la fiabilité sera évaluée pour optimiser les paramètres de soudage et améliorer les performances du BT-FSW. Bobbin tool friction stir welding (BT-FSW) is a variant process of friction stir welding with a particular tool configuration, composed of an additional shoulder taking support on the lower surface of the base metal. It enables additional heat input, a more homogeneous heat flow in the thickness direction and complete penetration of the pin. It is also more convenient for some assembly configurations. BT-FSW is a process considered a "green technology" for its energy efficiency, but it includes many parameters and the understanding of the impact of these parameters and of the physical phenomena during welding remains to be developed in order to optimize the quality of the weld and promote the process. BT-FSW welds have indeed particular microstructure. Experimental tests will be performed with different welding parameters, in order to characterize aluminum welds depending on these parameters by different analytical techniques. The objective is to establish predictive models of the welds' properties and to assess these models' reliability to optimize welding parameters and improve BT-FSW performances.

Introduction Context:

- As the construction material, aluminium has multitude of advantages such a a high strength-to-weight ratio, excellent durability, corrosion resistance.
- A positive trend in increase of its use in civil infrastructure is yet to happen, primarily due to the lack of knowledge on their behaviour and proper design recommendations.

Objectives:

- To investigate the local buckling instability of aluminium extrusions through experimental and numerical studies.
- To enable a more efficient buckling design of thin-walled aluminium extrusions under compression.

Test Description

- · Circular Hollow Sections (CHS) with 6061-T6 aluminium alloy.
- 4 tensile coupon tests to measure the material properties.
- Four series of stub column tests with axial compression.
- Six short beam-column tests with eccentric compression.

Tensile tests

- · The dimension of coupons were fabricated in accordance with the ASTM standard [1]: CHS 152×5 and CHS 203×3 as shown in Fig. 2.
- To prevent creating eccentric loads, extra brackets were placed between CHS coupons and testing rig.
- A calibrated extensometer of 20 mm was mounted at the middle of each coupon
- Loading procedure and loading rate follow the recommendations in [2].

Fig. 2. Tensile test set-up

- Local geometrical imperfections may affect buckling behaviour of a specimen
- Imperfections in the specimens were measured by means of professional 3D scanners.
- Fig. 4 shows the 3D scan data, the magnified imperfection shape and corresponding spline curves approximating the real geometry.
- The results show that the amplitude of local imperfections is around D/200 to D/300, where D is the outer diameter of CHS.

Malgré les nombreux avantages de l'aluminium, tels que son rapport résistance/poids élevé, son excellente durabilité, sa résistance à la corrosion, sa recyclabilité et sa formabilité dans les constructions durables, celui-ci est encore peu utilisé dans les infrastructures civiles, principalement en raison du manque de connaissances sur son comportement et de recommandations de conceptions adéquates. Afin de permettre une conception plus efficace des éléments structurels en aluminium, cette étude vise à analyser le comportement en flambage des extrusions d'aluminium à parois minces à l'aide d'études expérimentales et numériques. Afin d'étudier plus spécifiquement les instabilités locales du flambage des extrusions d'aluminium, quatre séries d'essais sur des colonnes avec compression axiale et six essais sur des poutres et colonnes courtes avec compression excentrique ont été réalisées sur des sections creuses circulaires en alliage 6061-T6. Les imperfections géométriques initiales des échantillons ont été mesurées à l'aide de scanneurs 3D et les propriétés des matériaux ont été obtenues à l'aide d'essais de traction. Des modèles numériques ont également été développés pour les spécimens d'essai dans le logiciel ABAQUS. Après avoir intégré les dimensions mesurées, les relations contrainte-déformation, les imperfections géométriques et les conditions de support adéguates dans les modèles numériques, la résistance ultime et les modes de défaillance ont été estimés et sont en bonne adéquation avec leurs équivalents expérimentaux. Dans l'ensemble, les modèles numériques se sont avérés fiables et devraient donc être largement utilisés dans les études paramétriques subséquentes.

Despite numerous advantages of aluminium such as a high strength-to-weight ratio, excellent durability, corrosion resistance, recyclability and formability in sustainable constructions, a positive trend in increase of its use in civil infrastructure is yet to happen, primarily due to the lack of knowledge on their behaviour and proper design recommendations. To enable a more efficient design for aluminium structural members, this study aims at analyzing the buckling behaviour of thin-walled aluminium extrusions through experimental and numerical studies. With the specific objective to investigate the local buckling instability of aluminium extrusions, four series of stub column tests with axial compression and six short beam-column tests with eccentric compression were performed on Circular Hollow Sections (CHS) with 6061-T6 aluminium alloy. The initial geometrical imperfections of the specimens were measured by using professional 3D scanners and the material properties were obtained through tensile coupon tests. Numerical models were also developed for the test specimens in the ABAQUS software. Upon implementing the measured dimensions, stress-strain relationships, geometrical imperfections and adequate support conditions into the numerical models, the ultimate resistance, load-displacement response, and failure modes were estimated which were in good agreement to their experimental counterparts. Overall, the numerical models were proved to be reliable and shall therefore be used extensively in consecutive parametric studies.

Column tests

- The thicknesses t, outer diameters D and lengths L (=3*D) of each specimen were measured beforehand through micrometer and vernier caliper.
- The column ends were fixed to the end plates with the clamps bolted to the end-plates to prevent material yielding in the heat-affected zone.
- For stub column tests, the specimens were subjected through axial compression through a 5000 kN hydraulic machine, following a displacement-controlled procedure. One transducer was positioned on the stub end to measure the axial shortening of the specimens.
- For short beam-column tests, the specimens were loaded eccentrically through spherical end supports in a 2000 kN hydraulic machine.

Acknowledgements:

Results and conclusions

- Finite element (FE) models were developed using ABAQUS that are in good agreement with the experimental observations (see Fig. 7).
- In the future, extensive parametric studies will be performed employing these experimentally validated FE models for an in-depth numerical study on the buckling behaviour of aluminium extrusions.

ULaval **Prachi Verma** ULaval Pampa Dey ULaval UI aval **Nicolas Boissonnade** ULaval

Sahar Dahboul

Liya Li

ULaval

Mario Fafard

Analyse de flambement non linéaire d'éléments en aluminium dans des tours de transmission d'énergie Nonlinear buckling analysis of aluminum members in transmission towers

De facon générale, les composantes structurales d'une tour de transmission sont fabriquées en acier. Dans le projet de recherche présenté dans cette affiche, l'aluminium a été utilisé comme matériau structural à la place de l'acier afin de tirer profit de certaines propriétés favorables de l'aluminium : légèreté, résistance accrue à la corrosion, recyclabilité, possibilité de créer des sections complexes sur mesure. Nonobstant ces qualités favorables par rapport à l'acier, le faible module d'Young de l'aluminium rend les membrures plus sensibles à des instabilités structurales (flambage local, ou global). Les membrures des éléments des tours en treillis supportent principalement des charges de traction et de compression. Par conséquent, le flambage est un problème important dans ces éléments comprimés. Dans cette affiche, le problème du flambage et les modes de rupture de sections carrées (SHS), de sections rectangulaires (RHS) et de sections ouvertes en U (US) ont été étudiés par le biais d'analyses par éléments finis volumiques. Les résultats des analyses de flambage non linéaire effectuées au moyen du logiciel ABAQUS ont été validés par des résultats expérimentaux. Les résultats des analyses ont également été comparés aux prédictions de norme CSA-S157-17 en matière de conception des structures en aluminium au Canada.

Typically, the structural components of a transmission tower are made of steel. In the research project presented in this poster, aluminum was used as a structural material instead of steel in order to take advantage of some of aluminum's favorable properties: light weight, increased corrosion resistance, recyclability, and the ability to create complex custom sections. Notwithstanding these favorable qualities compared to steel, the low Young's modulus of aluminum makes the members more susceptible to structural instabilities (local or global buckling). The members of lattice tower elements are mainly subjected to tensile and compressive loads. Therefore, buckling is an important problem in these compressed members. In this poster, the buckling problem and failure modes of square sections (SHS), rectangular sections (RHS), and open U-shaped sections (US) were investigated through volume finite element analyses. The results of the nonlinear buckling analyses performed using ABAQUS software were validated by experimental results. The results of the analyses were also compared to the predictions of CSA-S157-17 standard for the design of aluminum structures in Canada.

Caractérisation des effets de l'humidité et de la température sur le comportement en fatigue des joints collés en Aluminium Characterisation of the moisture and temperature effects on the fatigue behavior of

adhesively bonded Aluminum joints

CRSNG

NSERC

degraded sample shows points with different reflected amplitude in both interfaces meaning there are discontinuities or defects at these points(time

53 and 72). More signal processing will be applied to quantify the effect of degradation on obtained C-Scan results Exposed environmental conditions decrease the joint strength by 5.5 %

> Under a given applied stress, the crack initiation and subsequent failure occurs sooner in degraded samples

Reference

[1] R. Standards, Cataplasma Test Method for Glazing Adhesives of Vehicles Cataplasma Test Method for Glazing Adhesives of Vehicles, (2008) 8–9.

Le collage de l'aluminium présente de nombreux avantages par rapport aux techniques d'assemblage conventionnelles. Il s'agit notamment de réaliser des joints continus avec une répartition uniforme des contraintes, de réduire les vibrations tout en diminuant le poids de la structure. Néanmoins, les joints adhésifs sont sensibles à la température et à l'humidité par rapport aux autres types de techniques d'assemblage. Dans cette étude, les joints à recouvrement simple collés par adhésif ont été exposés à une condition de Cataplasma qui implique l'exposition à des températures élevées et basses et à de l'humidité. Le statut conjoint d'échantillons vierges et dégradés a été étudié avec des images C-scan. La résistance résiduelle et la durabilité des joints d'échantillons dégradés ont été comparées à celles d'origine. Un système d'émission acoustique a été appliqué pour déterminer le nombre de cycles au cours desquels les fissures ont commencé. Les résultats C-scan ont montrés des défauts au niveau de la zone collée des échantillons exposés au Cataplasma, provenant du choc thermique appliqué et de l'humidité absorbée. Les échantillons dégradés ont montré moins de résistance et de durabilité par rapport aux échantillons vierges. Les résultats d'émission acoustique ont montré que l'initiation des fissures s'est produite plus rapidement dans les échantillons dégradés. Cela signifie que la ténacité à la rupture de l'adhésif diminue dans ces conditions environnementales. Cependant, la surface de rupture de tous les échantillons était cohésive et le traitement de surface appliqué fournit une adhérence parfaite entre l'adhésif et l'aluminium.

Adhesive bonding of aluminum presents numerous advantages over conventional joining techniques. These include making continuous joints with uniform stress distribution, and reducing vibration while diminishing the weight of the structure. Nonetheless, adhesive joints are sensitive to temperature and moisture compared to other types of joining techniques. In this study, adhesively bonded single lap joints were exposed to Cataplasma condition which includes high and low temperature and moisture. The joint status of pristine and degraded samples was investigated with C-scan images. The residual strength and the joint durability of degraded samples were compared with pristine ones. An acoustic emission system was used to determine the number of cycles in which the cracks initiated. The C-scan showed defects in the bonded area of samples exposed to Cataplasma, which comes from the applied thermal shock and absorbed moisture. Degraded samples showed less strength and durability compared with pristine ones. The Acoustic emission system was used to determine that crack initiation happened faster in degraded samples and which means that the fracture toughness of adhesive decreases under environmental conditions. However, the failure surface of all samples was cohesive, and the applied surface treatment provides perfect adhesion between adhesive and aluminum.

Marzieh Nodeh UdeS

Ahmed Maslouhi UdeS Alain Desrochers UdeS

53

Matériaux nanostructurés synthétiques sur mousse de cickel et aluminium pour l'application énergétique

Engineered nanostructured materials on nickel foam and aluminium for energy application

1.0 Introduction

UQAC

Université du Québec à Chicoutimi

Rania Nuamah UQAC

Saleema Noormohammed UQAC Dilip Sarkar UQAC

> Les supercondensateurs sont devenus des dispositifs de stockage d'énergie intéressants pour répondre à la demande croissante d'énergie propre, renouvelable et durable. Pour répondre aux exigences pratiques des dispositifs de stockage d'énergie, il est souhaitable de synthétiser des matériaux d'électrode nanostructurés à faible coût, ayant une surface spécifique élevée, une capacité élevée, une densité d'énergie élevée et une stabilité de cycle longue. Dans ce travail, des matériaux d'électrode de supercondensateur nanostructurés de Ni-NiO, Co-Co₃O₄, Ag/Co-Co₃O₄ et Ppy ont été synthétisés par une nouvelle technique d'électrodéposition sur de la mousse de nickel ainsi que sur de l'aluminium. La diffraction des rayons X (XRD), la microscopie électronique à balayage (SEM), l'analyse des rayons X à dispersion d'énergie (EDS) et la spectroscopie infrarouge (ATR-FTIR) ont été utilisées pour étudier la structure, la morphologie de surface, la composition élémentaire et les groupes fonctionnels des électrodes. Les propriétés supercapacitives des électrodes ont été évaluées par voltamétrie cyclique (CV), charge-décharge galvanostatique (GCD) et spectroscopie d'impédance électrochimique (EIS). Des valeurs de capacité spécifique de 2000, 2580, 2800 et ~100 Fg⁻¹ ont été obtenues pour les électrodes Ni-NiO, Co-Co₃O₄, et Ag/Co-Co₃O₄ et Ppy respectivement à un courant spécifique de 1 Ag⁻¹. Les électrodes fabriquées ont également montré une stabilité à long terme après 3000 cycles de charge-décharge répétés. Ces résultats démontrent que les matériaux d'électrodes nanostructurés synthétisés présentent un potentiel comme électrodes de supercondensateurs à haute performance.

Supercapacitors have become attractive energy storage devices to address the growing demand for clean, renewable and sustainable energy. To meet the practical requirements of energy storage devices, it is desirable to synthesize low-cost nanostructured electrode materials, having high specific surface area, high capacitance, high energy density and long cycle stability. In this work, nanostructured supercapacitor electrode materials of Ni-NiO, Co-Co₃O₄, Ag/Co-Co₃O₄ and Ppy have been synthesized by a novel electrodeposition technique on nickel foam as well as on aluminum. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDS), and infrared spectroscopy (ATR-FTIR) were used to investigate the structure, surface morphology, elemental composition and functional groups of the electrodes. The supercapacitive properties of the electrodes were assessed using cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopy (EIS). Specific capacitance values of 2000, 2580, 2800 and -100 Eg⁻¹ were obtained for the Ni-NiO, Co-Co₃O₄ and Ppy electrodes respectively at specific current of 1 Ag⁻¹. The fabricated electrodes also exhibited long-term stability after 3000 repeated charge-discharge cycles. These results demonstrate that the synthesized nanostructure delectrode materials show potentials as high-performance supercapacitor electrodes.

Les propriétés mécaniques et la microstructure de l'alliage AlSi10Mg après procédé de fusion sélective par laser

Mechanical properties and microstructure of AlSi10Mg alloy after Selective Laser Melting

AXE 2 : TRANSFORMATION ET APPLICATIONS TRANSFORMATION AND APPLICATIONS

Esmaeil Pourkhorshid UQAC

Paul Rometsch Rio Tinto X.-Grant Chen UQAC

En tant que procédé de fabrication additive, la fusion sélective par laser (SLM) a attiré une attention importante dans la production d'alliages d'aluminium. La plupart des travaux de recherche de ces dernières années sont consacrés pour développer par le procédé (SLM) une nouvelle génération d'alliages d'aluminium avec d'excellentes propriétés mécaniques. Dans le présent travail, les propriétés mécaniques de l'alliage AlSi10Mg pour le moulage à haute pression (HPDC), ont été comparées dans deux méthodes de production différentes (SLM, HPDC). La microstructure a été caractérisée par des microscopies électroniques à balayage et à transmission. Les résultats montrent que la limite d'élasticité de l'alliage étudié après vieillissement direct après le SLM (T5) était de 385 MPa, ce qui est significativement plus élevé que la condition T6 après HPDC. Les résultats de la microstructure montrent que cette excellente propriété a été obtenue grâce à un durcissement par solution solide vu le nombre élevé d'atomes dans la matrice, à la structure et la morphologie fine de l'eutectique et au durcissement par précipitation. Selective laser melting (SLM) as an additive manufacturing process has attracted great attention in the production of aluminum alloys. In recent years, most of the research works have been conducted to develop a new generation of aluminum alloys for the SLM process with excellent mechanical properties. In the present work, the mechanical properties of an AISI10Mg alloy for high-pressure die casting (HPDC) were compared in two different production routes (SLM, HPDC). The microstructure was characterized by scanning and transmission electron microscopy. The results show that the yield stress of this alloy after direct aging after the SLM (T5) was 385 MPa, which is significantly higher than the T6 condition after HPDC. The results of microstructure show that this outstanding property was obtained by solid solution strengthening due to the high number of atoms in the matrix, fine eutectic structure and morphology, and precipitation strengthening.

Étude de l'effet du traitement thermique sur la microstructure et la dureté des alliages d'aluminium-lithium pour les applications aérospatiales Investigating the effect of heat treatment on the microstructure and strength of the Aluminum-Lithium alloys for aerospace application

Lida Radan

Victor Sonamene

Fawzy Hosny Samue

Yasser Zedan

ÉTS

ÉTS

ÉTS

ÉTS

manufacturers are more willing to use Al-Li alloys in recent years [1].	
 Fig. 1: The engineering properties required for differences Fig. 2: Ares V concepts, Source: Image sources are for MAS (concepts, Source: Image sources are for MAS (concepts,	$\mathbf{F}_{\mathbf{r}} = \mathbf{F}_{\mathbf{r}} + \mathbf{r} \cdot \mathbf{V}_{\mathbf{r}} + \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} + \mathbf{r} \cdot \mathbf{r} + \mathbf{r} \cdot \mathbf{r} \cdot \mathbf{r} + \mathbf{r} + \mathbf{r} \cdot \mathbf{r} + $
Materials and Method	Î Î
The effect of the corresponding treatments on the microstructure feature and stree were studied. The hardness measurements were carried out. The SEM and J analysis were performed to investigate the precipitations with the secondary elec detector. X-ray diffraction (XRD) analysis was used to investigate phase evolution.	ngth EDS tron $Fig. 5: XRD patterns of Al-Li-Cu alloy under different conditions : a) as cast, b) aged,c) solution heat treatedfigure (1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$
SEM and EDS	Conclusion
Fig. 3 : Project flowchart. Table. 1 : Chemical Composition of Al-Li alloys.	 The higher hardness were achieved at solutioning for (505°C/5h) and then aging for (160 °C /20hr). The most important strengthening phase was copper aluminide that increases the hardness and improves the mechanical property.
(WT.%) Al-Li 0.58 <0.003 <0.027 0.28 0.23 0.040 0.010 0.052 0.012 1.9	0.010 References
Al-Li-Cu 0.18 <0.003 <0.003 0.012 0.099 2.9 0.039 0.007 0.090 0.010 3.0 Al-Li-Cu- Sc 0.17 <0.003	 0.010 1. Joshi, Amit, J. Indian Institute of Technology Bombay, 2005, Lithium aluminum alloy: the new generation aerospace alloys. 2. Wahill R, Bray G., 2014, Aerostructural design and its application to aluminum-lithium

Table, 2 : Heat treatment temperatures and times.

Alloy	Solution Heat treatment (Time/Temp)	Temperature °C	Aging Time (h)
Al-Li	505°C/5h	160	5, 10, 15, 20, 25, 30
Al-Li-Cu	505°C/5h	180	5, 10, 15, 20, 25, 30
Al-Li-Cu-Sc	505°C/5h	200	5, 10, 15, 20, 25, 30

Introduction

1 0 1 00 .

Study the machinability of Aluminum-Lithium alloys for aerospace applications.

alloys. In: Prasad E, Gokhale A, Wanhill H, editors. Aluminum-lithium alloys: processing, properties, and applications. Butterworth-Heinemann: Elsevier Inc; p. 28-6.

Future Work

Results

h

La nécessité d'améliorer le rendement énergétique, de réduire les coûts de maintenance, etc., a poussé et continuera de pousser les avionneurs à optimiser les solutions de conception et de fabrication pour la nouvelle génération d'avions. C'est pourquoi, ces dernières années, les fabricants sont plus enclins à utiliser des alliages aluminium-lithium. Le lithium est l'élément métallique le plus léger connu et il réduit la densité tout en augmentant le module d'élasticité du matériau lorsqu'il est allié à l'aluminium.La présente étude visait à trouver un traitement thermique optimal pour un alliage qui contient un pourcentage plus élevé de lithium (3%), du scandium et du cuivre en se basant sur la caractérisation de la microstructure et de la dureté. Pour atteindre cet objectif, les alliages ont été soumis à différents traitements thermiques de mise en solution et à un vieillissement artificiel. Les résultats montrent que le traitement thermique optimal appliqué a produit trois précipitations différentes incluant δ'(Al 3 Li), θ (Al 2 Cu) et T1 (Al 2 CuLi) qui augmentent la dureté de l'alliage.

The need for improvements in fuel efficiency, lower maintenance costs, and so has driven and will continue to drive aircraft manufacturers to optimize design and manufacturing solutions for new generation of aircraft. Therefore, in recent years, manufacturers are more willing to use aluminum-lithium alloys. Lithium is the lightest known metallic element and reduces density while increasing the material's elastic modulus when alloyed with aluminum. The present study was aimed to find an optimum heat treatment for an alloy which contains a higher percentage of lithium (3%) with scandium and copper by characterization of the microstructure, and hardness. As a methodology to achieve the objective, the alloys were subjected to different solution heat treatments, and artificial ageing. The results show that the applied optimal heat treatment made three different precipitations including δ' (Al 3 Li), θ (Al 2 Cu) and T1 (Al 2 CuLi) that increase the hardness of alloy.

Développement des conducteurs en alliage Al-Zr-Sc pour les applications à température élevée Developing Al-Zr-Sc Alloy- Conductors for Elevated Temperature Applications

> UQAC Université du Québec à Chicoutimi

Introduction **Results** A series of high performance aluminum electrical conductor alloys is being developed. The effect of Sc in Al-Zr alloy with different combinations of Fe and Si was studied. In addition, various thermomechanical processing routes, including different combinations of heat treatments, hot rolling and wire drawing are being explored. Objective Fig. 3 Microhardness and EC of the alloys pr with: (a) route R2; (b) route R3 To develop electrical conductor Al alloys with AT4 grade that combines high thermal-resistant property (at 310 °C for 400 h) with 200 excellent electrical conductivity (58 %IACS) and high strength. 18 14 **Experimental** Fig. 4 Tensile strength (UTS) and elongation (EI) of the alloys processed with: (a) route R2; (b) route R3 able 1. Chemical compositions of alloy 0.14 0.27 0.00 0.26 Bal. 0.03 0.27 0.08 0.07 Bal. 0.24 0.28 0.11 0.07 Bal. 0.07 0.12 2. Thermo-mechanical processing Route 2 Aging treatment Cold wire drawing Casting - Hot rolling-Solution heat treatm TEL'I Fig. 5 Effect of thermal exposure on the UTS of alloys 3, Fig. 6 Dark field TEM images of alloys in R3. (a) Alloy Fig. 1 Thermal-mechanical processing routes 4. and 7 in route R2 2, (b) Alloy 3, (c) Alloy 4, (d) Alloy 7 Table 2. Heat treatments Table 3 Measurements on the precipitates number density Nv and mean diameter D of alloys in route 3 EC2 N/A 400°C for 6h to 96h EC3, EC4 and EC7 600°C for 8h 350°C for 6h to 48h 0.032+0.041 8.84±2.48 4.17±1.25 1.17±0.27 1.51+0.26 4.19±1.57 1.40+0.44 Fig. 7 TEM images of EC4: (a) Bright field image of EC4 R2; (b) Dark field image of EC4 R2; (c) Bright field image of EC4 R3; (d) Dark filed image of EC4 R3 4.21±1.1 **Conclusions** 1. The addition of Si improved the age hardening of Zr-containing alloys. L Rolling or 2. The small addition of Sc (<0.1 wt%) resulted in a significant increase in strength by 63-73% while maintaining high conductivity compared with the base Al-Zr alloy due to the Al₃(Sc,Zr) precipitates. 3. The Sc-containing alloys exhibited excellent thermal-resistant properties at Wire drawing press Cut square bars Rolled slice Fig. 2 Casting, rolling, machining and wire drawing processes d slice (7 mm t 310 °C and 400 °C due to the thermally stable Al₃(Sc,Zr) precipitates.

Quan Shao UQAC

E.M. Elgallad UQAC A. Maltais Rio Tinto X-Grant Chen UQAC

Avec l'évolution sociétale massive vers l'électrification, la demande industrielle des conducteurs en aluminium à haute résistance mécanique et thermique ne cesse de croître. Une série des conducteurs électriques en alliages d'aluminium à hautes performances est en cours de développement visant à satisfaire les spécifications des critères standards des conducteurs. Des additions de Sc avec différentes combinaisons de Fe et Si ont été ajoutés en utilisant l'alliage de base en Al-Zr. Les conducteurs ont été préparés à travers deux méthodes thermomécaniques différentes. Les résultats montrent qu'une amélioration simultanée des propriétés mécaniques et de la conductivité électrique tout en maintenant une résistance thermique remarquable a été obtenue par micro-alliage avec Sc par rapport à l'alliage de base Al-Zr, ce qui a été attribué à la précipitation d'une densité numérique élevée des nanoparticules A_{is}(Sc, Zr). D'excellentes combinaisons de résistance à la traction ultime et de conductivité électrique (188-200 MPa et 58-60% IACS) ont été obtenues dans des alliages contenant du Sc en utilisant un procédé thermomécanique conventionnel (par exemple: coulée, laminage et tréfilage) pour répondre aux exigences particulières de différents critères standards des conducteurs. With the massive societal shift toward electrification, the industrial demand for high strength and high thermal resistance of aluminum conductors is continuously growing. A series of high-performance aluminum electrical conductor alloys is being developed aiming at satisfying the specifications of standard conductor grades. Additions of Sc with different combinations of Fe and Si were made using an Al-Zr based alloy. The conductors were prepared via two different thermomechanical processing routes. The results show that a simultaneous improvement of mechanical properties and electrical conductivity while maintaining outstanding thermal resistance was achieved by microalloying with Sc in comparison with the base Al-Zr alloy, which was attributed to the precipitation of a high number density of Al₃(Sc, Zr) nanoparticles. Excellent combinations of ultimate tensile strength and electrical conductivity (188-200 MPa and 58-60% IACS) were obtained in Sc-containing alloys using conventional thermomechanical process (e.g., casting, rolling and wire drawing) to fulfill the particular requirements of different standard conductor grades.

Prédiction et amélioration de la qualité des produits d'aluminium sinés Predicting and Improving the Quality of Machined Aluminium parts

ÉTS

La demande de produits finis de haute qualité est l'une des grandes préoccupations des industriels, des fabricants et consommateurs. L'aluminium est très prisé dans de nombreux secteurs de fabrication industrielle tels que l'aérospatiale, l'automobile et la fabrication de matrices et de moules, et ce en majorité pour son fable poids, ses bonnes propriétés corrosives et électriques et sa facilité de mise en forme. Néanmoins, l'usinage des pièces en aluminium peut s'avérer très difficile en raison de sa nature ductile qui peut mener à la formation des arrêtes rapportées sur l'outil et nuire à la qualité de surface des pièces ou à la tenue des outils. Dans cette étude, un effort est fait pour prédire les effets du rayon de l'arête de l'outil et les contraintes résiduelles engendrées dans la pièce pendant l'usinage à grande vitesse. Les études ont été réalisées en développant un modèle par éléments finis de la coupe orthogonale à sec de l'AA6061-T6 avec le logiciel DEFORM. Les résultats aideront les machinistes et fabricants industriels à prédire ou à rechercher des contraintes résiduelles de compression sur les pièces en aluminium usinées en fonction des paramètres du processus d'usinage, afin d'améliorer leurs performances en service. The demand for high-quality end products is a major concern for manufacturers and consumers. Aluminium is highly valued in many industrial manufacturing sectors such as aerospace, automotive, die and mould making, largely due to its low weight, good corrosive and electrical properties and ease of formability. However, machining aluminium parts can be very difficult due to its ductile nature, which can lead to the formation of burrs on the tool and adversely affect the surface quality of the parts or the performance of the tools. In this study, an effort is made to predict the effects of cutting tool edge radius, rake angle and clearance angle on cutting temperature, tool wear and residual stresses generated in the workpiece during high-speed machining. The studies were carried out by developing a finite element model of the dry orthogonal cut of AA6061-T6 with the DEFORM software. The results will help industrial machinists and manufacturers to predict or investigate residual compressive stresses on machined aluminium parts as a function of machining process parameters, to improve their in-service performance.

Sandrine A. Tcheuhebou

Victor Sonamene

Mohammad Jahazi

Mahshad Javidikia

Tina

ÉTS

ÉTS

ÉTS

ÉTS

Fatigue dans les joints soudés par friction malaxage à double épaulement dans les ponts en aluminium Fatigue of friction stir welded joints using a bobbin tool in aluminium bridges

> UNIVERSITÉ LAVAL

> > Fig 3. Extrusion soudée

Fig 7. Courbe contrainte-défo

Fig 9. Courbe contrainte-défor

Indice

e1-2 e2 e3 e4 e4-2

e10-2

matériel soudé

avance imm/min

Tableau 1. Ré

métal de ba

Résultats obtenus à ce jour

Fig 4. Test de pliage

ation du

Fig 8. Résultats des te

métal de base

Fig 10. Résultats des tests de traction su

291,37 291,37 291,37 291,37 291,37 291,37 291,37

291,37

70.36

74,54

74,62

70,73

276,24 276,24 276,24 276,24 276,24 276,24 276,24 276,24

276,24 276,24

205,00 207,50 206,33 218,70 217,18 217,41

217,41

206,10

213,24

sts de traction

Remerciements

Mes remerciements s'adressent à AluQuebec et l'Université Laval en collaboration avec l'Université du Québec à Chicoutimi ainsi qu'au CNRC/CTA pour leur implication tout au long de ce projet.

UOAC

Université du Québec à Chicoutimi

Introduction et problématique

La fatigue est la problématique majeure dans les platelages soudés des ponts en aluminium. Le soudage par friction malaxage (FSW) vient en renfort à cette problématique de part les avantages qu'il présente dont la minimisation d'apport de chaleur dans la pièce. Peu d'étude porte sur la fatigue des pièces soudées en FSW.

Une autre problématique est le manque de normes qui régissent la soudure par FSW que ce soit pour les valeurs des résistances en traction que pour les données en fatigue. De plus, les courbes de fatigue de référence qui existent sont celles des soudures en fusion.

Fig 2. Procédé du soudage par friction malaxage

L'objectif principal de cette étude est de réaliser un processus expérimental sur une analyse en fatigue de profilés extrudés en alliage 6061-T6 soudés par friction malaxage à l'aide d'un pion à double épaulement. Cela permettra de réaliser une courbe de fatigue qui servira de référence pour des prochaines études.

Objectifs spécifiques

- Trouver les paramètres d'avance et de rotation optimaux pour une soudure;
 Minimiser les défauts dans les soudures afin de réaliser des tests de fatigue optimaux;
- Pouvoir réaliser une courbe de fatigue des joints bout à bout soudés par FSW avec le pion à
- double épaulement;
- Minimiser la dimension de la ZAT dans les soudures;

Fig 1. Bobbin-tool ou pion à double épaulement

1 Worlphon 2 Tag strendler 3 Fuller 4 Bolton strendler 1 Bolton strendler 1 Bolton strendler

Élaborer une méthode d'étude pour l'analyse en fatigue.

Méthodologie

La méthodologie du travail est basée selon la norme ISO25239-4 et la AWS.D17.3 qui permet de faire la qualification des soudures. Par la suite, les essais de fatigue seront réalisés selon la norme ASTM E466 ainsi que la CSA-S157 et CSA-S16-19.

Conclusion

Les divers résultats des tests de qualification ont permis de trouver des paramètres de rotation et d'avance de 850 rpm - 650 mm/min pour des épaisseurs de soudure de 8 mm qui donne un pourcentage d'efficacité du joint de 74,5%. Cette valeur est supérieure au minimum énoncé par la norme ISO-25239-4 et AWS.D17.3 qui est de 60%. Ces résultats montrent une augmentation des propriétés mécaniques en traction

De plus, les tests visuels, d'ultrason et de pliage ont permis de voir qu'il n'y avait aucun défaut dans la soudure.

Travaux à venir

des résultats obter

124,97

1,4

118,94 126,74 140,80 139,82

127,99

135,58

152,10

Les paramètres optimaux qui ont été obtenues ont servi à souder une extrusion de 10 pieds de long et des tests de qualification de soudure devront être réalisés pour valider la soudure. Des échantillons seront extraits de cette extrusion afin de réaliser une batterie de tests. À cet effet, 12 échantillons sont prévus pour les tests de fatigue, un total 18 échantillons sont prévus pour la traction, 3 échantillons pour les tests de Vickers et 3 échantillons pour les tests de métallographie. Ces échantillons seront pris sur plusieurs endroits de l'extrusion dont le centre, le début et la fin de l'extrusion soudée.

dont l'Eurocode 9, la CSA-S6-19, la IIW-1823-07 et l'ADM pour les soudures bout à bout qui sont sollicitées dans le sens transversal. La courbe de fatigue élaborée sera mise en comparaison avec ces courbes normatives.

Le soudage par friction malaxage est un type de soudage à froid qui permet d'assembler des pièces à des températures atteignant 0,8 à 0,9 fois la température en fusion de l'aluminium sans toutefois l'excéder. Il est réalisé à l'aide d'un outil possédant un pion et un double épaulement appelé bobbin-tool permettant de souder les pièces sans l'usage des plaques de solidarisation. Afin de réaliser l'étude de fatigue, plusieurs étapes ont été réalisées dont l'optimisation des paramètres de soudage ainsi que des tests de qualification qui ont permis d'obtenir des paramètres de 850 rpm et 650 mm/min. Ces paramètres ont permis d'avoir des soudures avec le moins de défauts possible ce qui a été validé à l'aide des tests d'ultrasons et de pliage. Les tests d'ultrasons ont permis de constater qu'il n'y avait aucun défaut interne et le test de pliage qu'il n'y avait pas de défaut à la racine dans la soudure. Les tests de traction ont permis d'obtenir un pourcentage d'efficacité de joint plus élevé que le minimum prescrit par la littérature. La minimisation des défauts dans les soudures permettra d'avoir de meilleurs résultats de tests de fatigue.

Friction stir welding is a type of cold welding that allows parts to be joined at temperatures reaching 0.8 to 0.9 times the molten temperature of aluminum without exceeding it. It is made using a tool with a pin and a double shoulder called bobbin tool allowing the parts to be welded without the use of connection plates. To carry out the fatigue study, several steps were carried out including the optimization of the welding parameters as well as qualification tests which made it possible to obtain parameters of 850 rpm and 650 mm/ min. These parameters made it possible to have welds with the fewest possible defects, which was validated using ultrasonic and bending tests. The ultrasonic tests showed that there were no internal defects and the bend test that there was no root defect in the weld. The tensile tests yielded a seal efficiency percentage higher than the minimum prescribed by the literature. Minimizing defects in the welds will lead to better fatigue test results.

Kenza Marianne Sipereh Tinguery UQAC

Mario Fafard ULaval **François Nadeau** Rio Tinto Ahmed Rahem UQAC

Préparation de surface pour le collage structural de l'aluminium avec des matériaux similaires et dissimilaires

Surface preparation for structural adhesive bonding of aluminum with similar and dissimilar materials

Le collage d'aluminium et de multimatériaux contribue à l'allègement des véhicules en réduisant le nombre de joints mécaniques des structures. Il est essentiel d'obtenir une excellente résistance des joints adhésifs, ce qui peut être obtenu en appliquant des traitements de surface appropriés pour enforcer les liaisons interfaciales d'adhésif/surface. Dans cette étude, des collages structurels d'Al-Al et d'Al-PVC ont été réalisés en utilisant des procédés électrochimiques, mécaniques et plasma. Les surfaces traitées présentent des rugosités *rms* (Ra) plus élevées. La caractérisation par microscope électronique à balayage (MEB), rayons X à dispersion d'énergie (EDS) et la spectroscopie infrarouge (ATR-FTIR) ont confirmé les caractéristiques chimiques et mor phologiques des traitements respectifs. Des échantillons de cisaillement (SLS), préparés à l'aide d'un adhésif époxy 2-C, ont été soumis à des essais mécaniques pour évaluer la résistance des joints. Des résistances élevées au cisaillement de ~21 MPa pour les joints Al-Al présentant une rupture cohésive de 100% et de ~12 MPa pour les joints Al-PVC avec une combinaison de rupture cohésive du substrat sur le PVC ont été atteintes. Les résultats montrent que les résistances des joints et les modes de rupture dépendent significativement de la rugosité de la surface et des liaisons chimiques.

Adhesive bonding of aluminum and multi-material system contributes to greenhouse gas emission reduction via vehicle light-weighting by reducing the number of mechanical joints in the structures. Obtaining excellent adhesive joint strengths is essential, which can be achieved by applying appropriate surface treatments to strengthen bonds adhesive/surface interface. In this study, structural adhesive bonding between AI-AI and AI-PVC was investigated by using electrochemical, mechanical and plasma processes. Treated AI and PVC surfaces show higher *rms* roughness (R₃). Characterization by scanning electron microscope (SEM), energy-dispersive X-ray analysis (EDS) and infrared spectroscopy (ATR-FTIR) revealed the chemical and surfaces prepared using a 2-C epoxy adhesive were subjected to mechanical testing for joint strength evaluation. High shear strengths of ~21 MPa for AI-AI joints presenting 100% cohesive failure and ~12 MPa for AI-PVC joints with 57% cohesive failure and 43% substrate failure on PVC were achieved on the best treatment condition. The results show that the joint strengths and the failure modes significantly depend on the surface roughness and simultaneous chemical linkings. Comportement en fatigue des joints bout à bout- par recouvrement soudés par friction malaxage dans les profils extrudés pour application dans les platelages des ponts routiers en aluminium

Fatigue behaviour of butt-lap friction stir welded joints in hollow extruded profiles for aluminum brigde deck applications or Al alloys in additive manufacturing

1-Introduction

Context

- Fatigue cracks initiate from vulnerable details such as welds which are extensively used in the fabrication of aluminum highway bridge decks
- A relatively new welding technology known as friction stir welding (FSW) has been suggested to replace conventional welding processes due to its enhanced welding quality and fatique strength

Figure 1. Friction stir welded aluminum highway bridge deck in Saint Ambroise, Québec

What is missing ?

- Fatigue design curves of friction stir welds in aluminum highway bridge decks
- Quality control criteria of friction stir welds in aluminum highway bridge decks
 Effect of common welding fabrication defects on the fatigue behaviour of friction stir
- welded joints in aluminum highway bridge decks

Objectives

- Provide design S-N curves of aluminum highway bridge deck friction stir welded joints.
- Provide quality control criteria of friction stir welded joints in aluminum highway bridge
 deck application
- Provide fatigue optimization guidelines of friction stir welded joints in aluminum highway bridge decks

2- Experimental work

Fatigue specimens

Figure 2.Fatigue testing setup (dimensions in mm): asmall scale (ASTM E466) fatigue specimens, b-large scale fatigue specimens (aluminum alloy for both specimens is 6063-T6)

Small-scale fatigue testing

3- Results

Fatigue failure at weld toe (cracks arising at toe flash)

 Enhanced fatigue strength (compared to butt-lap friction stir welded ioins in literature

Figure 3. Fatigue failure in small-scale specimens

Large-scale fatigue testing

LVDT helped with the determination of the number of cycles to failure
Fatigue failure started from the hooking defect within the interface tip

4-Conclusions

- Small-scale specimens fail within the heat affected zone area
 Relative thickness (thickness of the joint / thickness of the flange) significantly enhances the fatigue strength of butt-lap friction stir welds
- Large-scale fatigue specimens fail in the upper flange FSW joint from the hooking defect

5-Acknowledgements

- Les fonds de recherche du Québec Nature et technologies
- (FRQNT) • Safi Inc.
- Construction Proco Inc.

Mamoun Trimech ULaval

Charles-Darwin Annan ULaval Scott Walbridge University of Waterloo

Cette affiche présente une étude pour investiguer le comportement en fatigue des joints soudés par friction malaxage présentant une configuration bout à bout-par recouvrement pour des applications de ponts routiers en aluminium. Des échantillons de grande échelle extraits d'extrusions à échelle réelle soudés par friction malaxage ont été préparés. Les essais de fatigue ont été réalisés sous chargement cyclique à amplitude constante pour initier la rupture par fatigue dans les joints soudés. Les résultats expérimentaux montrent que la rupture par fatigue s'est initiée d'un défaut intrinsèque dans la racine de la soudure appelée remontée de surface. La fissuration de fatigue s'est ensuite propagée vers le point d'application de charge. Des analyses par éléments finis ont été réalisées pour évaluer les résultats expérimentaux de fatigue avec la méthode de contrainte d'entaille tel que recommandé par l'institut international de soudage (IIS). Les résultats numériques montrent que la courbe de réference IIS FAT-71 peut être utilisée pour évaluer les résultats de fatigue de la recherche actuelle d'une façon conservatrice. This poster presents a summary of a study conducted to investigate the fatigue behaviour of butt-lap friction stir welded (FSW) joints for aluminum bridge deck applications. Large-scale fatigue specimens extracted from full-sized FSW extrusions made for bridge deck applications were prepared. Fatigue tests were then conducted under constant amplitude loading aiming to initiate the fatigue failure from the welded joints. Experimental results show that the fatigue failure initiated from the hooking defect within the FSW root and propagated diagonally towards the load application point. Finite element analysis was performed in order to assess the experimental fatigue data based on the notch stress approach as recommended by the international institute of welding (IW). Numerical results show that the design IW FAT-71 curve could be conservatively used to assess the fatigue data in the current research.

REMERCIEMENTS ACKNOWLEDGEMENTS

Remerciements Acknowledgements

La mise en œuvre de l'ensemble des projets présentés dans cette encyclopédie nécessite des investissements majeurs et ce, tant au niveau des milieux universitaires et gouvernementaux que de la part des secteurs industriels concernés. C'est en parcourant cet ouvrage que vous réaliserez le dynamisme et l'ingéniosité de ces étudiants et professeurs, chercheurs passionnés, visant non seulement l'excellence, mais le développement d'un pôle québécois de recherche sur l'aluminium reconnu au niveau international.

Le Centre de recherche sur l'aluminium – REGAL tient à remercier les participants de la Journée des étudiants du REGAL qui, en acceptant la reproduction de leurs affiches, ont permis la création de cette encyclopédie.

The realization of the projects presented in this synopsis required major funding from key players working in the aluminium industry, including university, governments and various industrial sectors. When reading through this work, you will realise how dynamic and ingenious these passionate students, professors, and researchers are. They not only aim to excel, they wish to develop an internationally-recognised aluminium research hub in Quebec.

Aluminium Research Centre – REGAL would like to thank the participants of the REGAL Students' Day who, by accepting to have their posters reproduced, made the creation of this synopsis possible.

Partenaires / Sponsors

Principal		Alumin	ium	A	Alumine	
aluQu	lébec	RioTinto	+ELYSIS			
Grappe	de l'aluminium	Centre québécois de recherche et de développement de l'étuinum		B	auxite	
	Å	AS IDEES AN TRANSFORMATION	Alcoa	The Atministry Forum	Contrib and build de notin-dreame es la initialização de doutese	
Cégep de Trois-Rivières Bois-Brochu, A. Levasseur. D.	s / CMQ Marin, G. Rouget, G.	École Polytechnique de Mo Clément, B. Chartrand, P.	ontréal	Université du Québec à Adombi, V. Ahmed, M.	Chicoutimi Kocaefe, Y. Lecointre, L.	
Université Laval Alamdari, H. Baastani, N. Boissonnade, N. Boil, B Da Rosa, O. Dahboul, S. Duchesne, C. Fafard, M. Fortin, T. Gauvin, H. Jamali, S. Lacroix, O. École de technologie su Delbergue, D. Mendez Figueroa, H. Radan, L.	Laliberté-Riverin, S. Landry, N. Li, L. Oudjene, M. Sadeghi Chahardeh Shadvar, N. Tremblay, ML. Trimech, M. Tuyizere, F. Verma, P. Ipérieure Tina S. Yazdaniesmaeilabad, Ml	McGill University Boudreau, P. Brochu, M. Dhillon, J. S. Fu,A. Dumar, M. Li, Z. Concordia University Rahman, M. Université de Sherbrooke Bazarchi, E. Desrochers, A. Diop, P.M. Lamarche, CP. Sébastien Langlois Maslouhi, A.	Paray, F. Singh, A. Tumulu, S.K. Wu, S. Mohebbi, S. Nodeh, M.	Alarie, J. Alarie, J. Algendy, A. Amara, B. Basohbatnovinzad, M. Berti Chilton, T.T. Bonneau, G. Chen, Z. Cui, L. Daigneault, R. Dabaghi, M. Dastjerdi B. Dion, L. Elashery, A. Fassadi Chimeh, A. Faye, G.D. Ghosh, A. haji, C. Hu, P. Javidani, M. Khoshghadam Pireyou- sefan M. Kiss, L. Kocaefe, D.	Marceau, D. Ménard, S. Motahari Moghadam E. Muhammed, M. Ngombe, O. G. Nuamah, R. Pearson, J. Pourkhorshid, E. Qassem, M. Rastegari, A. Richer, T. Roger, T. Saeidi, O. Sarkar, D. Shao, Q. St-Georges, L. Théberge, S. Tinguery, K. M. Tiwari, M.M. Tremblay, SO. Tremblay, SO. Tremblay, S. N. Yavari, F.	
Alcoa Lauzon-Gauthier, J. Ramzi, I.	Cégep de Jonquière Morin, S.	CRITM Pouliot, JF.	Hatch Khalil, P. Reichelson, D.	RioTinto Bilodeau, JF. Fortier, M.	Nikzad Khangholi,S. Ouellet, V.	
Axelys Chamberland, A.	Cégep de Chicoutimi Ménard, S.	CORDA Prévost-Côté, R.	Icsoba Ferret, F.	Gilbert-Chouinard, E. Goutière, V. Guérard, S. Lei, P.	Romtsch, P. Ross, J. Tremblay, L.	
AluQuébec Archambault, Y. Chapdeleine, A.	CNRC Béland, JF. Gariepy, A. Menini, R. Simard, S.	Elysis Kobtseva, L.	Réseau Trans-Al Cadieux, P. Noormohammed, S.	Tra-C industrie Dzedzej, C.		

Le Centre de recherche sur l'aluminium – REGAL tient également à remercier l'ensemble de ses collaborateurs qui, de près ou de loin, ont contribué à la réalisation de cet ouvrage. Aluminium Research Centre – REGAL would also like to thank every one of their collaborators who, near or far, contributed to the production of this work.

Membres du bureau de direction du REGAL / Members of REGAL Steering Committee

Houshang Alamdari, directeur REGAL, Université Laval Daniel Marceau, directeur adjoint REGAL, UQAC X-Grant Chen, UQAC Florence Paray, McGill University Mamoun Medraj, Université Concordia Myriam Brochu, École Polytechnique de Montréal Victor Songmene, École de technologie supérieure Ahmed Maslouhi, Université de Sherbrooke Gheorghe Marin, Cégep de Trois-Rivières Carl Duchesne, Université Laval

Le Centre de recherche sur l'aluminium – REGAL est financé par le FRQNT

Fonds de recherche Nature et technologies Québec 🐳 🏕